Search for effective metallic fuels and methods of their activation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A literature review on methods of activation of combustion of metallic fuels (MF) — Al and B — and their compounds in the composite propellant combustion is presented. The main ways and techniques aimed at increasing the completeness of MF combustion and the realization of its calorific value are considered, namely: the use of combined fuels, alloys, and mechanical activation; applying functional coatings to the surface of MF particles; making the composite conglomerates (granules); increasing the dispersion of MF; and the use of unconventional oxidizers and optimal binders. Some methods and ideas have been tested experimentally using a laboratory approach designed to compare a variety of MF. As a result, it seems promising to use mechanically activated aluminum diboride and activating additives in the propellant formulations and to increase the boron mass fraction in propellant over 40% provided that particles are protected from interaction with other propellant ingredients and the agglomeration is minimized.

全文:

受限制的访问

作者简介

Oleg Glotov

Voevodsky Institute of Chemical Kinetics and Combustion Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Technical University

编辑信件的主要联系方式.
Email: glotov@kinetics.nsc.ru

(b. 1957) — Candidate of Science in physics and mathematics, head of laboratory, Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences; associate professor, Novosibirsk State Technical University

俄罗斯联邦, 3 Institutskaya Str., Novosibirsk 630090; 20 Karl Marx Ave., Novosibirsk 630073

参考

  1. Talin, D. D. 2003. Vnutrennyaya ballistika stvol’nykh sistem i raketnykh dvigateley tverdogo topliva [Internal ballistics of barrel systems and solid propellant rocket engines]. Perm’: Perm’ State Technical University. 165 p.
  2. Timnat, Y. M. 1987. Advanced chemical rocket propulsion. London, Orlando: Academic Press. 286 p.
  3. Yanovskii, L. S., D. B. Lempert, V. V. Raznoschikov, I. S. Aver’kov, and M. S. Sharov. 2020. Assessment of the efficiency of some metals and non-metals in solid propellants for ramjet engines. Combust. Explo. Shock Waves 56(1):71–82. doi: 10.1134/S0010508220010098.
  4. Pokhil, P. F., A. F. Belyayev, Yu. V. Frolov, V. S. Logachev, and A. I. Korotkov. 1973. Combustion of powdered metals in active media. Foreign Technology Division, WP-AFB. FTD-MT-24-551-73. 409 p.
  5. Tsutsuran, V. I., N. V. Petrukhin, and S. A. Gusev. 1999. Voenno-tekhnicheskiy analiz sostoyaniya i perspektivy razvitiya raketnykh topliv [Military and technical analysis of a state and prospects of development of rocket propellans]. Moscow: Ministry of Defence of the Russian Federation. 332 p.
  6. Frolov, Y. V., P. F. Pokhil, and V. S. Logachev. 1972. Ignition and combustion of powdered aluminum in high-temperature gaseous media and in a composition of heterogeneous condensed systems. Combust. Explo. Shock Waves 8(2):168–187.
  7. Gladun, V. D., Y. V. Frolov, and L. Y. Kashporov. 1977. Aglomeratsiya chastits poroshkoobraznogo metalla pri gorenii smesevykh kondensirovannykh sistem [Agglomeration of the powdered metal particles in combustion of the composite condensed systems]. Chernogolovka: Institute of Chemical Physics of the USSR Academy of Sciences. Preprint. 39 p.
  8. Price, E. W. 1984. Combustion of metalized propellants. Fundamentals of solid propellant combustion. Progress in astronautics and aeronautics ser. New York, NY: American Institute of Aeronautics and Astronautics. 90:479–514.
  9. DeLuca, L. T., C. Paravan, A. Reina, E. Marchesi, F. Maggi, A. Bandera, G. Colombo, and B. M. Kosowski. 2010. Aggregation and incipient agglomeration in metallized solid propellants and solid fuels for rocket propulsion. AIAA Paper No. 2010-6752. 26 p.
  10. Lipanov, A. M., V. P. Bobryshev, A. V. Aliyev, F. F. Spiridonov, and V. D. Lisitsa. 1994. Chislennyy eksperiment v teorii RDTT [Numerical experiment in the solid rocket motor theory]. Ekaterinburg: Nauka. 304 p.
  11. Gorbachev, A. S., A. S. Lebedev, S. N. Vagichev, and A. V. Kurbatov. 2023. Vliyanie utoplennosti sopla na osazhdenie kondensirovannoy fazy v kamere sgoraniya raketnogo dvigatelya tverdogo topliva [The effect of nozzle drowning on the deposition of a condensed phase in the combustion chamber of a solid propellant rocket motor]. Boepripasy [Ammunition] 2:5–10.
  12. Babuk, V. A., V. A. Vassiliev, and V. V. Sviridov. 2001. Propellant formulation factors and metal agglomeration in combustion of aluminized solid rocket propellant. Combust. Sci. Technol.163:261–289.
  13. Zarko, V. E., and O. G. Glotov. 2013. Formation of Al oxide particles in combustion of aluminized condensed systems (review). Sci. Technol. Energ. Ma. 74(6):139–143.
  14. Korotkikh, A. G., O. G. Glotov, V. A. Arkhipov, V. E. Zarko, and A. B. Kiskin. 2017. Effect of iron and boron ultrafine powders on combustion of aluminized solid propellants. Combust. Flame 178:195–204.
  15. Pang, W. Q., L. T. DeLuca, X. Z. Fan, O. G. Glotov, K. Wang, Z. Qin, and F. Q. Zhao. 2020. Combustion behavior of AP/HTPB/Al composite propellant containing hydroborate iron compound. Combust. Flame 220:157–167.
  16. Krishnan, S., and P. George. 1988. Solid fuel ramjet combustor design. Prog. Aerosp. Sci. 34(3-4):219–256.
  17. Kuo, K. K., and R. Pein, eds. 1993. Combustion of boron-based solid propellants and solid fuels. Boca Raton, FL: CRC Press. 544 p.
  18. Bakulin, V., N. Dubovkin, V. Kotova, V. A. Sorokin, V. Frantsevich, and L. S. Yanovsky. 2009. Energoemkie goryuchie dlya aviatsionnykh i raketnykh dvigateley [Energy-intensive fuels for aircraft and rocket engines]. Ed. L. S. Yanovsky. Moscow: Fizmatlit. 400 p.
  19. Sorokin, V. A., L. S. Yanovsky, V. A. Kozlov, E. V. Surikov, M. S. Sharov, V. D. Feldman, V. P. Frantskevich, N. P. Zhivotov, V. M. Abashev, and V. V. Chervakov. 2010. Raketno-pryamotochnye dvigateli na tverdykh i pastoobraznykh toplivakh. Osnovy proektirovaniya i eksperimental’noy otrabotki [Rocket-ramjet engines on solid and paste-like propellants: Fundamentals of design and experimental testing]. Eds. A. A. Sorokin and Y. M. Milyokhin. Moscow: Fizmatlit. 350 p.
  20. Kuo, K. K., and R. Acharya. 2012. Applications of turbulent and multi-phase combustion. Hoboken, NJ: John Wiley & Sons, Inc. 600 p.
  21. Pang, W., L. T. De Luca, X. Fan, O. G. Glotov, and F. Zhao. 2019. Boron-based fuel-rich propellant: Properties, combustion, and technology aspects. CRC Press, Taylor & Francis Group, an Informa Group Co. 323 p.
  22. Glotov, O. G. 2023. Screening of metal fuels for use in composite propellants for ramjets. Prog. Aerosp. Sci. 142:100954. 25 p. doi: 10.1016/j.paerosci.2023.100954.
  23. Meerov, D. B., K. A. Monogarov, A. A. Bragin, Y. V. Frolov, A. N. Pivkina, N. I. Shishov, and T. A. Bestuzheva. 2015. Issledovanie protsessa aglomeratsii pri gorenii borsoderzhashchikh sostavov [A research of the agglomeration process upon combustion of boron-containing formulations]. Goren. Vzryv (Mosk.) — Combustion and Explosion 8(2):211–217.
  24. Glotov, O. G., D. A. Yagodnikov, A. B. Kiskin, and G. S. Surodin. 2019. Combustion characteristics of model composite propellants containing boron and its compounds. 8th European Conference for Aeronautics and Space Sciences Proceedings. Madrid. 1–13. doi: 10.13009/EUCASS2019-260. Available at: https://www.eucass.eu/index.php/component/docindexer/?task=download&id=5903 (accessed November 20, 2024).
  25. Yuan, J., J. Liu, L. Q. Zhang, P. Xu, D. Chen, and W. Yang. 2021. Combustion and agglomeration characteristics of boron particles in boron-containing fuel-rich propellant. Combust. Flame 232:111551. doi: 10.1016/j.combustflame.2021.111551.
  26. Glotov, O. G., V. A. Poryazov, G. S. Surodin, I. V. Sorokin, and D. A. Krainov. 2023. Combustion features of boron-based composite solid propellants. Acta Astronaut. 204:11–24. doi: 10.1016/j.actaastro.2022.12.024.
  27. Aref’ev, K. Y., A. V. Voronetskii, A. N. Prokhorov, and L. S. Yanovskii. 2017. Experimental study of the combustion completeness of two-phase gasification products of energetic boron-containing condensed compositions in a high-enthalpy air flow. Combust. Explo. Shock Waves 53(3):283–292. doi: 10.1134/S0010508217030054.
  28. Fedorychev, A. V., D. V. Zhesterev, and I. R. Mishkin. 2020. Shlakovanie kriticheskogo secheniya sopla gazogeneratora raketno-pryamotochnogo dvigatelya [Slagging of nozzle throat in a ramjet gas generator]. Goren. Vzryv (Mosk.) — Combustion and Explosion 13(2):102–112. doi: 10.30826/CE20130211.
  29. Gany, A., and D. W. Netzer. 1986. Combustion studies of metallized fuels for solid-fuel ramjets. J. Propul. Power 2(5):423–427. doi: 10.2514/3.22924.
  30. Yan, T., P. Liu, N. Song, and Y. Ou. 2023. Insight into combustion characteristics of micro- and nano-sized boron carbide. Combust. Flame 251:112721. 12 p. doi: 10.1016/j.combustflame.2023.112721.
  31. Huang, X., M. Zhang, C. Lin, Y. Yang, S. Li, H. Li, Y. Yang, Z. Qin, and F. Zhao. 2022. Comparison on ignition and combustion of AlMgB composite fuel and B fuel. Chem. Eng. J. 450(2):138133. 15 p. doi: 10.1016/j.cej.2022.138133.
  32. Nikitin, P. Y., I. A. Zhukov, A. E. Matveev, S. D. Sokolov, M. S. Boldin, and A. B. Vorozhtsov. 2020. AlMgB –TiB composite materials obtained by self-propagating high-temperature synthesis and spark plasma sintering. Ceram. Int. 46(14):1–5. doi: 10.1016/j.ceramint.2020.06.039.
  33. Ponomarev, V. I., S. V. Konovalikhin, I. D. Kovalev, V. I. Vershinnikov, and I. P. Borovinskaya. 2014. Synthesis and crystal structure of [B12]2[CBC][C2]Mg142, a new modification of B25C4Mg142. Mendeleev Commun. 24:15–16. doi: 10.1016/j.mencom.2013.004.
  34. Wang, S., M. Schoenitz, and E. L. Dreizin. 2017. Combustion of boron and boron-containing reactive composites in laminar and turbulent air flows. Combust. Sci. Technol. 189(4):683–697. doi: 10.1080/00102202.2016.1246441.
  35. DeLuca, L. T., L. Galfetti, F. Severini, L. Rossettini, L. Meda, G. Marra, B. D’Andrea, V. Weiser, M. Calabro, A. B. Vorozhtsov, A. A. Glazunov, and G. J. Pavlovets. 2007. Physical and ballistic characterization of AlH -based space propellants. Aerosp. Sci. Technol. 11(1):1–8.
  36. Pang, W., X. Fan, F. Zhao, H. Xu, W. Zhang, H. Yu, Y. Li, F. Liu, W. Xie, and N. Yan. 2013. Effects of different metal fuels on the characteristics for HTPB-based fuel rich solid propellants. Propell. Explos. Pyrot. 38(6):852–859. doi: 10.1002/prep.201200182.
  37. Liu, L., Z. Wen, W. Ao, D. Gou, P. Liu, L. K. B. Li, and G. He. 2024. Effects of AlH particle size and loading on the combustion and agglomeration of solid propellants. Combust. Flame 262(113327):1–11. doi: 10.1016/ j.combustflame.2024.113327.
  38. Zhukov, A., I. Zhukov, M. Ziatdinov, V. Promakhov, A. Vorozhtsov, S. Vorozhtsov, and Y. Dubkova. 2016. Self-propagating high-temperature synthesis of energetic borides. AIP Conf. Proc. 1772:020015. doi: 10.1063/1.4964537. Available at: http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4964537 (accessed November 20, 2024).
  39. Korchagin, M. A., A. I. Gavrilov, B. B. Bokhonov, N. V. Bulina, and V. E. Zarko. 2018. Synthesis of aluminum diboride by thermal explosion in mechanically activated mixtures of initial reactants. Combust. Explo. Shock Waves 54(4):424–432. doi: 10.1134/S001050821804006.
  40. Ao, W., Z. Fan, L. Lu, Y. An, J. Ren, M. Zhao, P. Liu, and L. K. B. Li. 2020. Agglomeration and combustion characteristics of solid composite propellants containing aluminum-based alloys. Combust. Flame 220:288–297. doi: 10.1016/j.combustflame.2020.07.004.
  41. Nie, H., S. Pisharath, and H. H. Hng. 2020. Combustion of fluoropolymer coated Al and Al–Mg alloy powders. Combust. Flame 220:394–406. doi: 10.1016/ j.combustflame.2020.07.016.
  42. Pang, W. Q., R. A. Yetter, L. T. DeLuca, V. E. Zarko, A. Gany, and X. H. Zhanga. 2022. Boron-based composite energetic materials (B-CEMs): Preparation, combustion and applications. Prog. Energ. Combust. 93:101038. doi: 10.1016/j.pecs.2022.101038.
  43. Liang, D., J. Liu, Y. Zhou, and J. Zhou. 2017. Ignition and combustion characteristics of amorphous boron and coated boron particles in oxygen jet. Combust. Flame 185:292–300. doi: 10.1016/j.combustflame.2017.07.030.
  44. Wang, Y., E. Hagen, P. Biswas, H. Wang, and M. R. Zachariah. 2023. Imaging the combustion characteristics of Al, B, and Ti composites. Combust. Flame 252(112747):1–10. doi: 10.1016/j.combustflame.2023.112747.
  45. Guseynov, S., and S. Fedorov. 2016. Nanoporoshki alyuminiya, bora, boridov alyuminiya i kremniya v vysokoenergeticheskikh materialakh [Nanopowders of aluminium, boron, aluminium borides, and silicon in high-energy materials]. Moscow: TORUS PRESS. 256 p.
  46. Yagodnikov, D. A., A. V. Voronetskii, and V. I. Sarab’ev. 2016. Ignition and combustion of pyrotechnic compositions based on micro- and nanoparticles of aluminum diboride in air flow in a two-zone combustion chamber. Combust. Explo. Shock Waves 52(3):300–306. doi: 10.1134/S0010508216030072.
  47. Yagodnikov, D. A., S. L. Guseinov, P. A. Storozhenko, A. P. Shpara, A. V. Sukhov, and S. G. Fedorov. 2019. Morphologic, chemical, and spectral analyses of combustion products of micro- and nanodispersed particles of aluminum borides. Dokl. Chem. 484(1):5–7. doi: 10.1134/S0012500819010038.
  48. Korotkikh, A. G., O. G. Glotov, V. A. Arkhipov, V. E. Zarko, and A. B. Kiskin. 2017. Effect of iron and boron ultrafine powders on combustion of aluminized solid propellants. Combust. Flame 178:195–204. doi: 10.1016/ j.combustflame.2017.01.004.
  49. Hongqi, N., P. Sreekumar, and H. H. Huey. 2020. Combustion of fluoropolymer coated Al and Al–Mg alloy powders. Combust. Flame 220:394–406.
  50. Wang, L., H. Liu, M. Liu, and N. F. Wang. 2002. Experimental observations on disruptive burning of coated aluminum particles. Int. J. Energetic Materials Chemical Propulsion 2(1-6):407–411. doi: 10.1615/ IntJEnergeticMaterialsChemProp.v5.i1-6.440.
  51. Sossi, A., E. Duranti, M. Manzoni, C. Paravan, L. T. DeLuca, A. B. Vorozhtsov, M. I. Lerner, N. G. Rodkevich, A. A. Gromov, and N. Savin. 2015. Combustion of HTPB-based solid fuels loaded with coated nanoaluminum. Combust. Sci. Technol. 185(1):17–36. doi: 10.1080/00102202.2012.707261.
  52. Baek, J., Y. Jiang, A. R. Demko, A. R. Jimenez-Thomas, L. Vallez, D. Ka, Y. Xia, and X. Zheng. 2022. Effect of fluoroalkylsilane surface functionalization on boron combustion. ACS Appl. Mater. Inter. 14(17):20190–20196. doi: 10.1021/acsami.2c00347.
  53. Nie, H., S. Pisharath, and H. H. Hng. 2020. Combustion of fluoropolymer coated Al and Al–Mg alloy powders. Combust. Flame 220:394–406. doi: 10.1016/j.combustflame.2020.07.016.
  54. Zhao, B., S. Sun, Y. Luo, and Y. Cheng. 2020. Fabrication of polytetrafluoroethylene coated micron aluminium with enhanced oxidation. Materials 13(15):3384. 15 p. doi: 10.3390/ma13153384.
  55. Xu, P., J. Liu, X. Chen, W. Zhang, J. Zhou, and X. Wei. 2022. Ignition and combustion of boron particles coated by modified materials with various action mechanisms. Combust. Flame 242(112208):1–11. doi: 10.1016/j.combustflame.2022.112208.
  56. He, W., J. Y. Lyu, D. Y. Tang, G. Q. He, P. J. Liu, and Q. L. Yan. 2020. Control the combustion behavior of solid propellants by using core-shell Al-based composites. Combust. Flame 221:441–452. doi: 10.1016/ j.combustflame.2020.07.006.
  57. Meerov, D. B., K. A. Monogarov, N. V. Muravyev, I. V. Fomenkov, A. L. Vasil’ev, N. I. Shishov, and A. N. Pivkina. 2021. Prospects of using boron powders as fuel. III. Influence of polymer binders on the composition of condensed gasification products of model boron-containing compositions. Combust. Explo. Shock Waves 57(5):547–558. doi: 10.1134/S001050822105004X.

补充文件

附件文件
动作
1. JATS XML
2. Comparison of solid rocket motor and solid fuel ramjet (SFRJ). Due to the presence of an air intake and the use of atmospheric air as an oxidizer, as well as a propellant with a fuel excess, the missile with SFRJ has a higher specific impulse Isp and longer flight range

下载 (164KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».