INFLUENCE OF SELECTIVE LASER MELTING WITH ADDITIONAL REMELTING OF RECRISTALLISED LAYERS ON THE STRUCTURE AND PROPERTIES OF HEAT-RESISTANT STEEL 15X25T

Cover Page

Cite item

Full Text

Abstract

Research into the selective laser melting (SLM) process has led to a significant improvement in the quality of synthesized objects. With incorrect selection of process modes during the production of heat-resistant steel products, various defects (pores, cracks, lack of fusion) may occur, which significantly reduce the mechanical properties of the material. Elimination of defects in selective laser melting can be achieved by optimizing the laser beam processing mode. As such a processing strategy, it is proposed to re-melt the formed roller or heat-treat it with laser radiation without melting the metal during a second laser pass without powder feed. The study of the influence of repeated laser remelting of crystallized tracks on the microstructure and mechanical properties of parts made from powders of corrosion-resistant and heat-resistant steels is currently relevant. This article presents studies of the influence of growth modes of heat-resistant steel 15X25T samples on the structure and mechanical properties. The mechanical properties, heat resistance and corrosion resistance of 15Kh25T steel samples obtained by SLM with additional remelting of previously recrystallized tracks were investigated. It was shown that the obtained material surpasses the deformed semi-finished product made of 15Kh25T steel in a set of mechanical properties. Significant residual stresses at a level of 236 MPa were revealed in 15Kh25T steel samples. The use of additional remelting allows this level to be reduced to 108 MPa. The results of microstructural analysis of the surface layer of 15X25T steel samples obtained by SLM with additional laser remelting of recrystallized tracks (laser power 135 W and scanning speed 450 mm/s) revealed a decrease in the surface roughness of the sample Rz from 62 to 12 – 15 μm.

About the authors

Anna P. Adylina

Moscow Polytechnic University

Author for correspondence.
Email: dmitr1eva@mail.ru
ORCID iD: 0009-0008-6763-9278
SPIN-code: 4076-9283
Russian Federation

Viktor V. Ovchinnikov

Moscow Polytechnic University

Email: vikov1956@mail.ru
ORCID iD: 0000-0003-2948-2202
SPIN-code: 3367-9330

Ivan S. Kushnir

Moscow Polytechnic University

Email: kushn1r_ivan@mail.ru
ORCID iD: 0009-0002-5032-468X
SPIN-code: 3925-7441

To Man Hung

Moscow Polytechnic University

Email: manhhungxm@gmail.com
ORCID iD: 0009-0004-3987-313X

References

  1. Сапрыкина Н.А., Сапрыкин А.А. Влияние условий послойного лазерного спекания на качество спеченного поверхностного слоя из кобальтхроммолибденового порошка. В кн.: Актуальные проблемы в машиностроении. Материалы первой Международной научно-практической конференции. Новосибирск: Изд-во НГТУ. 2014:119–123.
  2. Zhou X., Li K., Zhang D., Liu X., Ma J., Liu W., Shen Z., Textures formed in a CoCrMo alloy by selective laser melting. Journal of Alloys and Compounds 2015;631:153–164. https://doi.org/10.1016/j.jallcom.2015.01.096
  3. Граф Б., Гоок С.Э., Гуменюк А.В., Ретмайер М. Комбинированные лазерные аддитивные технологии производства лопаток турбин сложной геометрической формы. Глобальная ядерная безопасность. 2016;3(20):34–42.
  4. Sghaier T.A.M., Sahlaoui, Mabrouki T., Sal-lem H., Rech J. Selective laser melting of stainless-steel a review of process, microstructure, mechanical properties and post-processing treatments. International Journal of Material Forming. 2023;16(4):1–12. https://doi.org/10.1007/s12289-023-01769-w
  5. Nandhakumar R., Venkatesan K. A process parameters review on selective laser melting-based additive manufacturing of single and multi-material: microstructure, properties, and machinability aspects. Materials Today Communications. 2023;35(9-10).
  6. https://doi.org/10.1016/j.mtcomm.2023.105538
  7. Lu J., Zhuo L. Additive manufacturing of titanium alloys via selective laser melting: Fabrication, microstructure, post-processing, performance and prospect. International Journal of Refractory Metals and Hard Materials. 2023;111(8). https://doi.org/10.1016/j.ijrmhm.2023.106110
  8. Song X., Zhang Y. Progress of high-entropy alloys prepared using selective laser melting. Science China Materials. 2023;66:4165–4181.
  9. Chen X., Wen K., Mu W., Zhang Y., Shan Huang, Liu W. Effect of layer-by-layer laser remelting process on the microstructure and performance of selective laser melting 316L stainless steel. The International Journal of Advanced Manufacturing Technology. 2023;128:2221–2236.
  10. Bouabbou A., Vaudreuil S. Understanding laser-metal interaction in selective laser melting additive manufacturing through numerical modelling and simulation: a review. Virtual and Physical Prototyping. 2022;17:543–562. https://doi.org/10.1080/17452759.2022.2052488
  11. Khan, H.M., Waqar, S., Koç, E. Evolution of temperature and residual stress behavior in selective laser melting of 316L stainless steel across a cooling channel. Rapid Prototyping Journal. 2022;28(7):1272‒1283.
  12. https://doi.org/10.1108/RPJ-09-2021-0237
  13. Zhang C., Zheng H., Yang L., Li Y., Jin J., Cao W., Yan Ch., and Sh Y. Mechanical responses of sheet-based gyroid-type triply periodic minimal surface lattice structures fabricated using selective laser melting. Materials & Design. 2022;214. https://doi.org/10.1016/j.matdes.2022.110407
  14. Zhai W., Zhou W., Zhu Z. Selective laser melting of 304L and 316L stainless steels: a comparative study of microstructures and mechanical properties. Steel Research international. 2022;93(7). https://doi.org/10.1002/srin.202100664
  15. Waqar S., Guo K., Sun J. Evolution of residual stress behavior in selective laser melting (SLM) of 316L stainless steel through preheating and in-situ re-scanning techniques. Optics & Laser Technology. 2022;149:107806. https://doi.org/10.1016/j.optlastec.2021.107806
  16. Uçak N., Çiçek A., Aslantaş K. Machinability of 3D printed metallic materials fabricated by selective laser melting and electron beam melting: A review. Journal of Manufacturing Pro-cesses. 2022;80(9):414–457.
  17. https://doi.org/10.1016/j.jmapro.2022.06.023
  18. Yao D., Wang J., Li M-P., Zhao T., Cai Y., An X., Zou, R., Zhang H., Fu H., Yang X., Zou Q. Segregation of 316L stainless steel powder during spreading in selective laser melting based additive manufacturing. Powder Tech-nology. 2022;397:117096–117096.
  19. https://doi.org/10.1016/j.powtec.2021.117096
  20. Gatões D., Alves R., Alves B., Vieira M.T. Selective Laser Melting and Mechanical Properties of Stainless Steels. Materials. 2022;15(21). https://doi.org/10.3390/ma15217575
  21. Галиновский А. Л., Филимонов А. С., Рогалев Р.С., Свешников А.С., Кравченко И.Н., Орлов М.А. Исследование баз данных материалов для технологии селективного лазерного плавления. Электрометаллургия. 2022;3:18–27. EDN: TABTZE.
  22. https://doi.org/10.31044/1684-5781-2022-0-3-18-27.
  23. Афанасьева Л. Е., Измайлов В.В., Новосе-лова М.В. Шероховатость поверхности образцов нержавеющей стали, полученных по технологии селективного лазерного плавления. В кн.: Механика и физика процессов на поверхности и в контакте твердых тел, деталей технологического и энергетического оборудования. 2021;14:62–66.
  24. EDN: PTMGXO.
  25. То М.Х., Сафонов Е.В., Адылина А.П., Овчинников В.В. Механические свойства и микроструктура стали 12Х18Н10Т, полученной методом селективного лазерного плавления. Заготовительные производства в машиностроении. 2022;20(6):282–287. EDN: OAYGSJ. https://doi.org/10.36652/1684-1107-2022-20-6-282-287
  26. Зельдович В.И., Хомская И.В., Хейфец А.Э., Абдуллина Д.Н. Структурные изменения при нагреве в аустенитной нержавеющей стали, полученной методом селективного лазерного плавления. Физика металлов и металловедение. 2022;123(9):971–977. EDN: KRARUS. https://doi.org/10.31857/S0015323022090133.
  27. Кривилев М.Д., Харанжевский Е.В., Камаева Л.В., Закирова Р.М. Анализ уровня остаточных напряжений в компактных образцах из стали 316L, полученных методом селективного лазерного плавления. В кн.: Берн-штейновские чтения по термомеханиче-ской обработке металлических материалов: Сборник тезисов. Научно-технический семинар. Москва, 25–27 октября 2022 г. Москва: Национальный исследовательский технологический университет «МИСИС», 2022:82. EDN: IZCBUI.

Supplementary files

Supplementary Files
Action
1. JATS XML

Журнал «Вестник Сибирского государственного индустриального университета»

Свидетельство о регистрации: ПИ № ФС77-77872 от 03.03.2020 г.

Журнал имеет международный стандартный номер сериального издания ISSN 2304-4497 (Print) и подписной индекс в каталоге «Урал-Пресс» – 41270

Учредитель:

ФГБОУ ВО «Сибирский государственный индустриальный университет»

Адрес редакции:

654007, Кемеровская обл. – Кузбасс, г. Новокузнецк, Центральный район, ул. Кирова, зд. 42, Сибирский государственный индустриальный университет, каб. 483гт, тел. 8-950-270-44-88

Ответственный за выпуски: Запольская Е.М. 

Издатель: Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный индустриальный университет», г. Новокузнецк, Россия

Исключительные авторские права на статьи принадлежат авторам ©

Обработка персональных данных

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).