CONDITIONS FOR THE INITIATION OF FATIGUE CRACKS IN STEEL UNDER CYCLIC LOADS, DEPENDING ON ITS STRENGTH
- Authors: Pavlov V.1, Temlyantsev M.2
-
Affiliations:
- Siberian Mining and Metallurgical Company
- Siberian State Industrial University
- Issue: No 3 (2025)
- Section: Статьи
- URL: https://ogarev-online.ru/2304-4497/article/view/381329
- ID: 381329
Cite item
Abstract
Currently, there are various, opposing points of view regarding the influence of non-metallic inclusions on the fatigue strength of steel. A number of studies by domestic and foreign metallurgists and materials scientists note the lack of correlation between the fatigue limit of steel and its total contamination with non-metallic inclusions. At the same time, numerous studies indicate that the presence of non-metallic inclusions has no practical effect on the cyclic fatigue strength of medium-strength steel. However, for steel with σв ≥ 1200 MPa, their negative effect is observed on transverse specimens, and for steel with σв ≥ 1700 MPa, also on longitudinal specimens. This article examines the conditions for fatigue crack initiation in steel under cyclic loads depending on its strength. It is shown that, under cyclic loading, the most dangerous stresses are tensile stresses, which form normal tensile stresses in the dislocation slip plane. A relationship has been obtained that allows one to determine the conditions under which the formation of crack nuclei from a surface defect or from non-metallic inclusions is most likely. It has been established that the influence of non-metallic inclusions on the possibility of fatigue crack formation is individual and depends on the morphology of non-metallic inclusions and their sizes. Large high-modulus non-metallic inclusions with a diameter of 5.0 – 7.0 μm or more can be responsible for the formation of cracks in the entire range of steel strength properties up to 500 to 2000 MPa. Ductile low-modulus aluminosilicate non-metallic inclusions with a Young's modulus no greater than that of the metallic matrix (200 – 210 GPa) do not cause the formation of cracks in the entire range of the ultimate tensile strength of steel. For practical application, graphs have been developed that allow one to predict the occurrence of an embryonic fatigue crack depending on the morphological type of non-metallic inclusions, their sizes, the surface condition of the steel specimen or metal product, and the tensile strength of the steel. Recommendations are given for organizing the steel deoxidation process, ensuring the formation of ductile non-metallic inclusions with a Young's modulus of no more than 200 – 210 MPa and minimizing the impact on the formation of fatigue cracks.
About the authors
Vyacheslav V. Pavlov
Siberian Mining and Metallurgical Company
Author for correspondence.
Email: vestnicsibgiu@sibsiu.ru
Russian Federation
Mikhail V. Temlyantsev
Siberian State Industrial University
Email: uchebn_otdel@sibsiu.ru
ORCID iD: 0000-0001-7985-5666
SPIN-code: 6169-5458
References
- Попелюх А.И., Веселов С.В., Мункуева Д.Д., Тимонин В.В., Карпов В.Н. Влияние неметаллических включений на сопротив-ление стали разрушению при многократном динамическом сжатии. Металловедение. 2017;2(75):67‒78.
- Zhang J.M., Li S.X., Yang Z.G., Li G.Y., Hui W.J., WengY.Q. In uence of inclusion size on fatigue behavior of high strength steels in the gigacycle fatigue regime. International Journal of Fatigue. 2007;29(4):765‒771.
- https://doi.org/10.1016/j.ijfatigue.2006.06.004
- Dominguez G.M.A. Prediction of very high cycle fatigue failure for high strength steels, based on the inclusion geometrical properties. Mechanics of Materials. 2008;40(8):636‒640. https://doi.org/10.1016/j. mechmat.2008.03.001
- Zhang C., Wang R., Zhu H. experimental study on mechanical properties of q690 high strength steel after fatigue damage. Jianzhu Jiegou Xuebao. 2021;Т.42(4):17–184.
- Tong L., Niu L., Ren Zh., Zhao X.L. experi-mental research on fatigue performance of high-strength structural steel series. Journal of Constructional Steel Research. 2021;183:106743.
- Yang Z.G., Zhang J.M., Li S.X., Li G.Y., Wang Q.Y., Hui W.J., Weng Y.Q. On the critical inclusion size of high strength steels under ultra-high cycle fatigue. Materials Science and Engineering: A. 2006;427(1-2):167‒174.
- https://doi.org/10.1016/j. msea.2006.04.068
- Терентьев В.Ф., Кораблева С.А. Усталость металлов. М.: Наука, 2015. – 484 с.
- Oberreiter M., Horvath M., Stoschka M., Fladischer S. Effect of surface finishing state on fatigue strength of cast aluminium and steel alloys. Fladischer S. Materials. 2023;16.(13):4755.
- Bae D.Su., Lee J.K. Еffect of surface rough-ness on fatigue strength in mar-tensitic stain-less steel. International Journal of Precision Engineering and Manufacturing. 2024;25. (10):2125–2131.
- Guo H., Wei H., Li G., Wang Ya. Еxperi-mental research on fatigue performance of corroded q690 high-strength steel. Journal of Materials in Civil Engineering. 2021;33(11):04021304.
- Zhao X., Zhang W., Chen H. Сomparative research on fatigue performance of high-strength bainitic steel with or without corrosion. Journal of Materials Engineering and Performance. 2020;29(11):7488–7498.
- Шпис Х.И. Поведение неметаллических включений в стали при кристаллизации и деформации. Пер. с нем. Москва: Метал-лургия. 1971:127.
- Sumita M., Uchiyama J., Araki T. Araki: A Model Experiment on Relationship between Fatigue Properties of Steel and Size, Shape, and Distribution of Inclusions. Tetsu To Ha-gane. 1971;57(2):289 – 334.
- Murakami Yu. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions. Elsevier, 2002:386.
- Терентьев В.Ф., Петухов А.Н. Усталость высокопрочных металлических материалов. Москва: ИМЕТ РАН-ЦИАМ, 2013:514.
- Frith P.H. Fatigue tests on rolled alloy steels made in electric and open-hearth furnaces J. iron and Steel Inst. 1955;180(1):26–38.
- Павлов В.В. Неметаллические включения, усталость, дефекты контактной усталости. Новокузнецк: ИЦ СибГИУ. 2021:144.
- Bhat S.P., Fine M.E. Fatigue crack nucleation in iron and a high strength low alloy steel. Materials Science and Engineering. 2001;314(1-2):90–96.
- Гуртов В.А., Осауленко Р.Н. Физика твердого тела для инженеров. Москва: Техносфера. 2012:558.
- Toribio J., González B., Matos J.C. transient and steady state regimes of fatigue crack growth in high strength steel. Key Engineering Materials. 2012;525-526:553–556.
- Саррак В.Н. О хрупком разрушении стали. В кн.: Металловеды. Иркутск: изд. Иркутского ун-та. 2009:258–261.
- Павлов В.В., Корнева Л.В. Взаимодействие системы «металлическая матрица – неметаллическое включение» в рельсовой стали. В кн.: Сб. науч. докладов «Улучшение качества и условий эксплуатации рельсов и рельсовых скреплений». Екатеринбург. 2010:133–148.
- Павлов В.В., Корнева Л.В. Разработка ме-тодики оценки скопления рельсовой стали к образованию дефектов контактно усталостного происхождения. В кн.: Сб. науч. докладов «Улучшение качества и условий эксплуатации рельсов и рельсовых скреплений». Екатеринбург. 2011:117–137.
- Павлов В.В., Темлянцев М.В., Трошкина А.В. О связи усталостных показателей с прочностными свойствами стали и роли неметаллических включений. Проблемы черной металлургии и материаловедения. 2020;(2):44–50.
- Павлов В.В., Темлянцев М.В., Бухмиров В.В. Увеличение усталостной прочности стали высокопрочных марок. Известия вузов. Черная металлургия. 2023;Т.66.(5):522–527.
- Одинг И.А. Допускаемые напряжения в машиностроении и циклическая прочность металлов. Москва: Машгиз. 1962:260.
- Федюкин В.К. Критический анализ учения о сопротивлении материалов. Санкт-Петербург: изд. Михайлова В.А. 2006;251.
- Нордлинг К., Остерман Д. Справочник по физике для ученого и инженера. Санкт-Петербург: БХВ-Петербург. 2011;522.
- Park Ye.Ch., An Ch.B., Kim M., Sim H.Bo. Effect of the depth of decarburized layer in skl15 tension clamp on fatigue strength. Ap-plied Sciences (Switzerland). 2021;11(9):3841.
- Tekeli S. Enhancement of fatigue strength of sae 9245 steel by shot peening. Materials Letters. 2002;57.(3):604–608.
- De la rosa C.E.F., Trejo M.H., Román M.C., López E.A. Effect of decarburization on the residual stresses produced by shot peening in automotive leaf springs. Journal of Materials Engineering and Performance. 2016;25(7):2596–2603.
- Malikoutsakis M., Gakias Ch., Makris I., Kinzel P., Müller E., Pappa M., Michailidis N., Savaidis G. on the effects of heat and surface treatment on the fatigue performance of high-strength leaf springs. MATEC Web of Conferences. 2021;349:04007.
Supplementary files
