EVALUATION OF TITANIUM DIOXIDE NANOTUBE STRUCTURE BY ULTRASONIC-HYDROTHERMAL SYNTHESIS METHOD FOR CORROSION INHIBITOR STORAGE APPLICATION

Cover Page

Cite item

Abstract

This study presents the synthesis of TiO2 nanotubes using a combined hydrothermal–ultrasonic approach with short hydrothermal durations ranging from 4 to 10 hours, aiming to evaluate the controllability of morphology and crystalline structure for anticorrosion applications. Ultrasonic pretreatment was applied to enhance precursor dispersion and promote the formation of ordered nanotubular structures, thereby reducing synthesis time compared with conventional hydrothermal processes. The obtained materials were characterized using several complementary techniques: scanning electron microscopy (SEM) to analyze morphology and nanotube distribution, Raman spectroscopy and X-ray diffraction (XRD) to assess phase composition and crystallinity, and Fourier-transform infrared spectroscopy (FTIR) to identify surface bonding features. The results revealed apparent differences in nanotube organization, crystallinity, and phase development depending on the reaction duration, confirming that synthesis time plays a decisive role in tailoring structural parameters. These findings demonstrate that the hydrothermal–ultrasonic method provides an efficient and versatile route for fabricating TiO2 nanotubes with tunable structural and functional properties. Furthermore, the synthesized nanostructures exhibit strong potential as carriers of corrosion inhibitors, enabling improved storage and controlled release within polymer-based protective coatings, thereby contributing to the development of next-generation anticorrosion technologies.

About the authors

Van Zung Vu

Moscow Automobile and Road Construction State Technical University

Author for correspondence.
Email: vandunph2605@gmail.com
ORCID iD: 0009-0000-0660-0144
Russian Federation

Huy Bach Nguyen

Moscow Automobile and Road Construction State Technical University

Email: huybach484@gmail.com
ORCID iD: 0009-0008-4597-7567

Ravil I. Nigmetzyanov

Moscow Automobile and Road Construction State Tech-nical University

Email: lefmo@yandex.ru
ORCID iD: 0009-0008-1443-7584

References

  1. Kasuga T., Hiramatsu M., Hoson A., Sekino T., Niihara K. Формирование нанотрубки оксида титана. Langmuir. 1998;14(12):3160–3163. https://doi.org/10.1021/la9713816
  2. Cui L., Hui K.N., Hui K.S. et al. Facile microwave-assisted hydrothermal synthesis of TiO₂ nanotubes. Mater Lett. 2012;75:175–178. https://doi.org/10.1016/j.matlet.2012.02.004
  3. Dimas B.V., Hernández Pérez I., Febles V.G. et al. Atomic-scale investigation on the evolution of TiO₂-anatase prepared by a sonochemical route and treated with NaOH. Materials. 2020;13(3):685. https://doi.org/10.3390/ma13030685
  4. Alkanad K., Hezam A., Al-Zaqri N. et al. One-step hydrothermal synthesis of anatase TiO₂ nanotubes for efficient photocatalytic CO₂ reduction. ACS Omega. 2022;7(43):38686–38699. https://doi.org/10.1021/acsomega.2c04211
  5. Ou H.H., Lo S.L. Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Sep Purif Technol. 2007;58(1):179–191.
  6. https://doi.org/10.1016/j.seppur.2007.07.017
  7. Zavala M.Á.L., Morales S.A.L., Ávila-Santos M.S. Synthesis of stable TiO₂ nanotubes: effect of hydrothermal treatment, acid washing and annealing temperature. Heliyon. 2017;3(11):e00456. https://doi.org/10.1016/j.heliyon.2017.e00456
  8. Shi Y., Li R., Lei Z. Influences of synthetic parameters on morphology and growth of high entropy oxide nanotube arrays. Coatings. 2022;13(1):46. https://doi.org/10.3390/coatings13010046
  9. Parinov I.A., Chang S.H., Gupta V.K., editors. Advanced Materials: Proceedings of the International Conference on “Physics and Mechanics of New Materials and Their Applications.” Springer International Publishing; 2018.
  10. Liu N., Chen X., Zhang J., Schwank J.W. A review on TiO₂-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catal Today. 2014;225:34–51. https://doi.org/10.1016/j.cattod.2013.10.090
  11. Niu L., Zhao X., Tang Z. et al. Difference in performance and mechanism for methylene blue when TiO₂ nanoparticles are converted to nanotubes. J. Clean Prod. 2021;297:126498. https://doi.org/10.1016/j.jclepro.2021.126498
  12. Muresan L.M. Nanocomposite coatings for anti-corrosion properties of metallic substrates. Materials. 2023;16(14):5092.
  13. https://doi.org/10.3390/ma16145092
  14. Kumar N., Sharma A. Surface coatings and functionalization strategies for corrosion mitigation. American Chemical Society. 2022;291–316. https://doi.org/10.1021/bk-2022-1418.ch014
  15. Kumar S.S., Kakooei S. Container-based smart nanocoatings for corrosion protection. In: Corrosion Protection at the Nanoscale. 2020;403–421. https://doi.org/10.1016/B978-0-12-819359-4.00021-0
  16. Ubaid F., Naeem N., Shakoor R.A., Kahraman R., Mansour S., Zekri A. Effect of concentration of DOC loaded TiO₂ nanotubes on the corrosion behavior of smart coatings. Ceram Int. 2019;45(8):10492–10500. https://doi.org/10.1016/j.ceramint.2019.02.111
  17. Ву В.З., Нигметзянов Р.И. Обзор защиты от коррозии с помощью нанонитей TiO₂ и нанотрубок БТА/TiO₂, диспергированных в эпоксидной смоле, и предлагаемый метод получения антикоррозионного покрытия из этого материала с помощью ультразвука. Chem Bull. 2025;8(1):2.
  18. https://doi.org/10.58224/2619-0575-2025-8-1-2
  19. Rajamahendran T., Kasinathan K., Sivakumar R. et al. Effects of hydrothermal temperature and time on the structural and morphology of TiO₂ nanotubes and functionalization with sulfonic acid. AIP Conf Proc. 2021;2401(1). https://doi.org/10.1063/5.0072985
  20. Chen H., Chen D., Bai L., Shu K. Hydrothermal synthesis and electrochemical properties of TiO₂ nanotubes as an anode material for lithium ion batteries. Int J Electrochem Sci. 2018;13(2):2118–2125. https://doi.org/10.20964/2018.02.75
  21. Ohsaka T., Izumi F., Fujiki Y. Raman spec-trum of anatase, TiO₂. J. Raman Spectrosc. 1978;7(6):321–324. https://doi.org/10.1002/jrs.1250070606
  22. Frank O., Zukalova M., Laskova B. et al. Raman spectra of titanium dioxide (anatase, rutile) with identified oxygen isotopes (16, 17, 18). Phys Chem Chem Phys. 2012;14(42):14567–14572. https://doi.org/10.1039/C2CP42763J
  23. Ubaid F., Naeem N., Shakoor R.A. et al. Effect of concentration of DOC loaded TiO₂ nanotubes on the corrosion behavior of smart coatings. Ceram Int. 2019;45(8):10492–10500. https://doi.org/10.1016/j.ceramint.2019.02.111
  24. Chen H., Chen D., Bai L., Shu K. Hydrothermal synthesis and electrochemical properties of TiO₂ nanotubes as an anode material for lithium ion batteries. Int J Electrochem Sci. 2018;13(2):2118–2125. https://doi.org/10.20964/2018.02.75
  25. Lacks D.J., Gordon R.G. Crystal-structure calculations with distorted ions. Phys Rev B. 1993;48(5):2889. https://doi.org/10.1103/PhysRevB.48.2889
  26. Swamy V., Dubrovinsky L.S., Dubrovinskaia N.A. et al. Size effects on the structure and phase transition behavior of baddeleyite TiO₂. Solid State Commun. 2005;134(8):541–546.
  27. https://doi.org/10.1016/j.ssc.2005.02.035
  28. Dimitrijevic N.M., Saponjic Z.V., Rabatic B.M., Poluektov O.G., Rajh T. Effect of size and shape of nanocrystalline TiO₂ on photo-generated charges: an EPR study. J. Phys Chem C. 2007;111(40):14597–14601. https://doi.org/10.1021/jp0756395
  29. Niu L., Zhao X., Tang Z., Lv H., Wu F., Wang X. et al. Difference in performance and mechanism for methylene blue when TiO₂ nanoparticles are converted to nanotubes. J. Clean Prod. 2021;297:126498. https://doi.org/10.1016/j.jclepro.2021.126498
  30. Bunaciu A.A., Udriştioiu E.G., Aboul-Enein H.Y. X-ray diffraction: instrumentation and applications. Crit Rev Anal Chem. 2015;45(4):289–299. https://doi.org/10.1080/10408347.2014.949616
  31. Jin S., Smith E.M. Raman Spectroscopy and X-Ray Diffraction: Phase Identification of Gem Minerals and Other Species. Gems Gemol. 2024;60(4):518–535.
  32. https://doi.org/10.5741/GEMS.60.4.518

Supplementary files

Supplementary Files
Action
1. JATS XML

Журнал «Вестник Сибирского государственного индустриального университета»

Свидетельство о регистрации: ПИ № ФС77-77872 от 03.03.2020 г.

Журнал имеет международный стандартный номер сериального издания ISSN 2304-4497 (Print) и подписной индекс в каталоге «Урал-Пресс» – 41270

Учредитель:

ФГБОУ ВО «Сибирский государственный индустриальный университет»

Адрес редакции:

654007, Кемеровская обл. – Кузбасс, г. Новокузнецк, Центральный район, ул. Кирова, зд. 42, Сибирский государственный индустриальный университет, каб. 483гт, тел. 8-950-270-44-88

Ответственный за выпуски: Запольская Е.М. 

Издатель: Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный индустриальный университет», г. Новокузнецк, Россия

Исключительные авторские права на статьи принадлежат авторам ©

Обработка персональных данных

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).