THE USE OF QUARTZITE REFRACTORY MATERIALS IN THE LINING OF CASTING LADLES IN THE PRODUCTION OF FERROSILICON
- Authors: Korennaya K.1, Zapol'skii A.1, Pronyakin A.1, Temlyantsev M.2, Zapolskaya E.2, Kuvshinnikova N.2
-
Affiliations:
- JSC Kuznetsk Ferroalloys
- Siberian State Industrial University
- Issue: No 4 (2025)
- Section: Статьи
- URL: https://ogarev-online.ru/2304-4497/article/view/380623
- ID: 380623
Cite item
Abstract
The issue of developing new refractories for lining ferroalloy buckets is considered. The experience of using refractory quartzite bricks as a lining for casting ladles in the production of ferrosilicon is presented. The research is aimed at increasing the durability of the lining, increasing repair intervals and reducing operating costs. It was found that the main reason for the destruction of the working layer of the refractory lining of the filling bucket is a significant temperature difference in the thickness of the lining (up to 1000 °C or more), which occurs in a relatively short period of time (thermal shock). The main destructive factor is the thermal stresses in the refractory lining that occur when the melt is ingested. Experiments were conducted at JSC Kuznetsk Ferrosplanes, during which quartzite bricks made using non-annealing technology using liquid glass were installed in the zone of greatest wear of the bucket lining. The quartzite lining has withstood 23 pours of ferrosilicon grade FS75, which exceeds the standard values of fireclay bricks (10-15 pours). The conducted studies revealed the best resistance of the quartzite material to thermal stresses and chemical effects of the melt. Mineralogical studies have confirmed the formation of stable phases (cristobalite, tridymite) in the working area, which helps to increase the durability of the lining. The refractory contains the least modified breccia-like zone, a transition zone, a cristobalite-tridymite, slag-like (inner working) zone, and a cristobalite (outer working) zone of refractories. The use of quartzite refractories is possible to extend the service life of filling buckets, reduce waste and improve the economic and environmental performance of production.
About the authors
K.A. Korennaya
JSC Kuznetsk Ferroalloys
Author for correspondence.
Email: Reception.GD@kfw.ru
Russian Federation
Andrei S. Zapol'skii
JSC Kuznetsk Ferroalloys
Email: ZapolskiyAS@mail.ru
A. Yu. Pronyakin
JSC Kuznetsk Ferroalloys
Email: PronyakinAU@kfw.ru
Mikhail V. Temlyantsev
Siberian State Industrial University
Email: uchebn_otdel@sibsiu.ru
ORCID iD: 0000-0001-7985-5666
SPIN-code: 6169-5458
Ekaterina M. Zapolskaya
Siberian State Industrial University
Email: beloglazova-ekat@mail.ru
ORCID iD: 0000-0002-8098-5895
SPIN-code: 7302-2751
Natalia I. Kuvshinnikova
Siberian State Industrial University
Email: vestnicsibgiu@sibsiu.ru
References
- Стариков В.С., Темлянцев М.В., Стариков В.В. Огнеупоры и футеровки в ковшевой металлургии. Москва: МИСИС, 2003:328.
- Кащеев И.Д., Стрелов К.К., Мамыкин П.С. Химическая технология огнеупоров. Москва: Интермет Инжиниринг, 2007:752.
- Алленштейн Й. Огнеупорные материалы. Структура, свойства, испытания / под ред. Г. Роучка, Х. Вутнау. Москва: Интермет Инжиниринг, 2010:392.
- Запольский А.С., Темлянцев М.В. Способы повышения стойкости футеровок разливочных ковшей ферросплавного производства. Вестник Сибирского государственного индустриального университета. 2024;4(50):83–91.
- Рис. 6. Кристаллы кристобалита; отраженный свет (увеличение 50 (а), 100 (б), 200 (в))
- Fig. 6. Cristobalite crystals. Reflected light (magnification 50 (а), 100 (б), 200 (в))
- Пронякин А.Ю. Применение кварцита Ан-тоновского месторождения в качестве за-полнителя при производстве огнеупорных бетонных изделий. Огнеупоры и техническая керамика. 2003;2:35–38.
- Запольская Е.М., Темлянцев М.В., Костю-ченко К.Е. Анализ основных направлений повышения энерготехнологической эффективности стендов высокотемпературного разогрева футеровок сталеразливочных ковшей. Вестник Российской академии есте-ственных наук. Западно-Сибирское отделение. 2013;15:128‒134.
- Michael Hampel. Beitrag zur Eigenschaftsbewertung von feuerfesten Magnesiakohlenstofferzeugnissen: Dissertation. Technische Universität Bergakademie Freiberg. Freiberg. 2010:226.
- Andreev K., Luchini B., Rodrigues M.J., Alves J.L. Role of fatigue in damage development of refractories under thermal shock loads of different intensity. Ceram. INT. 2020;(46):20707–20716. https://doi.org/10.1016/J.CERAMINT.2020.04.235
- Prikhod’ko E.V. Аnalysis of methods for heating the lining of high-temperature units. Refractories and industrial ceramics. 2021;62(4):463–466. https://doi.org/10.1007/S11148-021-00625-1
- Scheunis L., Fallah-Mehrjardi A., Campforts M., Jones P.T., Blanpain B., Malfliet A., Jak E. The effect of a temperature gradient on the phase formation inside a magnesia–chromite refractory in contact with a non-ferrous PbO – SiO2 – MgO slag. Journal of the european ceramic society. 2015;35(10):2933–2942.
- Yuxiang Dai, Jing Li, Wei Yan, Chengbin Shi. Corrosion mechanism and protection of BOF refractory for high silicon hot metal steelmaking process. Journal of Materials Research and Technology. 2020;9(3):4292–4308.
- https://doi.org/10.1016/j.jmrt.2020.02.055
- Zabolotskiy A.V., Turchin M.Y., Khadyev V.T., Migashkin A.O. Numerical investigation of refractory stress-strain condition under transient thermal load. AIP Conference Proceedings. 2020;2310:020355.
- Запольский А.С. Способы повышения стойкости футеровок разливочных ковшей в условиях действующего производства АО «Кузнецкие ферросплавы». В кн.: XIII Инновационный конвент "Кузбасс: образование, наука, инновации", посвященный 80-й годовщине победы в Великой Отечественной войне 1941 ‒ 1945 годов. Сборник тезисов докладов. Кемерово, 2025:206‒210.
- Черепанов К.А., Абрамович С.М., Темлянцев М.В., Темлянцева Е.Н. Рециклинг твердых отходов в металлургии. Москва: Флинта: Наука, 2004:212.
- ГОСТ 8691 ‒ 2018 «Изделия огнеупорные общего назначения. Форма и размеры». URL: https://docs.cntd.ru/document/1200160577 (дата обращения: 02.09.2025).
- Andreev K.P., Luchini B., Rodrigues M.J., Alves J.L. Role of fatigue in damage development of refractories under thermal shock loads of different intensity. Ceramics International. 2020;46(13):20707‒20716. https://doi.org/10.1016/j.ceramint.2020.04.235
- Andreev K.P., Yin Y., Luchini B., Sabirov I. Failure of refractory masonry material under monotonic and cyclic loading – Crack propagation analysis. Construction and Building Materials. 2021;299:124‒203.
- https://doi.org/10.1016/j.conbuildmat.2021.124203
- Cherepanov G.P. The mechanics and physics of fracturing: application to thermal aspects of crack propagation and to fracking. Phil. Trans. R. Soc. 2014.
- http://doi.org/10.1098/rsta.2014.0119S
- Harmuth H., Bradt R.C. Investigation of refractory brittleness by fracture mechanical and fractographic methods. Interceram Int. Ceram. Rev. 2010;1:6–10.
- Harmuth H. Characterisation of the Fracture Path in ‘Flexible’ Refractories. Adv. Sci. Technol. 2010;70:30–36.
Supplementary files
