CORROSION-ELECTROCHEMICAL CHARACTERISTICS OF ALUMINUM ALLOY AlMg5.5Li2.1Zr0.15 (DURALUMIN) WITH LANTHANUM, CERIUM, AND PRASEODYMIUM ADDITIONS IN 0.3% NACL SOLUTION

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The widespread use of duralumin in aviation, transportation and other industries is due to its high strength characteristics, low density and good manufacturability during casting and pressure treatment. The alloy under consideration belongs to the class of structural materials based on aluminum, reinforced with additives of copper, manganese, magnesium and lithium. Its operational properties are largely determined by the modes of heat treatment and the composition of the curing elements. One of the key factors limiting the durability of duralumin in aggressive environments is the tendency to local corrosion, in particular to pitting, which in freshwater is assessed primarily by the depth of damage. The results of a comprehensive study of the corrosion-electrochemical characteristics of an alloy of the AlMg5.5Li2.1Zr0.15 system (an analog of duralumin) additionally alloyed with small additives of rare-earth metals (lanthanum, cerium, and praseodymium) are presented. The experiments were performed in a model 0.3% NaCl solution using a potentiostatic technique in a dynamic mode at a polarization rate of 2 mV/s. The technique included recording the potential of free corrosion, constructing anode and cathode polarization curves, determining the potentials of pitting formation, and calculating the density of the corrosive current. It was found that an increase in the exposure time of the samples in the electrolyte, as well as an increase in the content of lanthanum, cerium, and praseodymium in the alloy, leads to a significant shift in the stationary corrosion potential to the positive region. The most pronounced effect was observed for praseodymium. At the same time, a decrease in the density of the corrosive current was noted. Modification of the alloy with rare earth elements contributed to an increase in its corrosion resistance in a chloride-containing environment by 10 ‒ 20 % compared with the base composition. The data obtained indicate that the introduction of La, Ce, and Pr leads to the formation of a more heterogeneous and passive surface that slows down the anodic processes of metal dissolution. The results of the work are of practical importance for the development of new corrosion-resistant aluminum alloys designed to work in conditions of exposure to seawater and other chloride-containing media.

Авторлар туралы

Saidmiri U. Khudoiberdizoda

V.I. Nikitin Institute of Chemistry of the National Academy of Sciences of Tajikistan

Хат алмасуға жауапты Автор.
Email: saidmir010992@mail.ru
ORCID iD: 0000-0002-5797-2738
SPIN-код: 2848-0700
Ресей

Salima S. Savdulloeva

V.I. Nikitin Institute of Chemistry of the National Academy of Sciences of Tajikistan

Email: salima10886@mail.ru
SPIN-код: 8131-9451

Izatullo N. Ganiev

V.I. Nikitin Institute of Chemistry of the National Academy of Sciences of Tajikistan

Email: ganievizatullo48@gmail.com
ORCID iD: 0000-0002-2791-6508
SPIN-код: 8683-2090

Sergei Yu. Kireev

Penza State University

Email: dean_fptet@pnzgu.ru
ORCID iD: 0000-0002-3135-0893
SPIN-код: 3974-4769

Әдебиет тізімі

  1. Perez N. Electrochemical corrosion. Materials Science: Theory and Engineering. – Cham: Springer Nature Switzerland. 2024;835‒898.
  2. Mayco international: official site. URL: https://maycointernational.com/blog/what-are-cars-made-of/ (дата обращения: 09.01.2025).
  3. Рындина Н.В. Цветные и драгоценные ме-таллы и их сплавы. Москва: Высшая школа. 2008:193.
  4. Синявский B.С., Калинин В.Д. Коррозия и способы защиты алюминиевых сплавов в морской воде соответственно их составу и структуре. Защита металлов. 2005;41(4):347‒359.
  5. Семенова И.В., Флорианович Г.М., Хорошилов А.В. Коррозия и защита от коррозии. Москва: Физмалит. 2010:416.
  6. Inzelt G. Future of electrochemistry in light of history and the present conditions. Journal of Solid State Electrochemistry. 2020;24(9):2089‒2092.
  7. Пожидаева С.Д., Иванов А.М., Макеева Т.В., Протасов М.А. Процессы быстрого и глубокого разрушения алюминия и его сплавов при температурах окружающей среды. Технология металлов. 2015;5:27–35.
  8. Основы химической технологии / Под ред. И.П. Мухлёнова, перераб. и доп. Москва: АльянС. 2017:463.
  9. Андреева Л.Л., Лидин Р.А., Молочко В.А. Химические свойства неорганических ве-ществ: Учеб. пособие для вузов: под ред. Р.А. Лидина. 3-е изд., испр. Москва: Химия, 2000:480.
  10. Kablov E.N. et al. Development and application prospects of aluminum–lithium alloys in aircraft and space technology. Metallurgist. 2021;65(1):72‒81.
  11. Братухин А.Г. Современные авиационные материалы: технологические и функцио-нальные особенности. Москва: АвиаТехИнформ. 2003:437.
  12. Тарасенко Л.В., Колобнев Н.И., Хохлатова Л.Б. Фазовый состав и механические свойства сплавов системы Al ‒ Mg ‒ Li ‒ Me. Металловедение и термическая обработка металлов. 2008;2:40–43.
  13. Hajjioui E. A. et al. A review of manufacturing processes, mechanical properties and precipitations for aluminum lithium alloys used in aeronautic applications. Heliyon. 2023;9(3).
  14. Киреев С.Ю., Синенкова С.Р., Киреева С.Н., Наумов Л.В., Козлов Г.В., Балыбердин А.С. Получение и свойства композиционных электрохимических покрытий индий-графит и никель-карбид вольфрама. Гальванотехника и обработка поверхности. 2024;32(1-2):6–12. https://doi.org/10.47188/0869-5326_2024_32_1-2_6
  15. Ганиев И.Н., Саидова Ф.Р., Худойбердизода С.У., Джайлоев Д.Х. Анодное поведение алюминиевого сплава АlMg5,5Li2,1Zr0,15 типа дюралюмин, со стронцием в среде водного раствора NaCl. Гальванотехника и обработка поверхности. 2024;32(1-2):13–19.
  16. https://doi.org/10.47188/0869-5326_2024_32_1-2_13
  17. Худойбердизода С.У., Ганиев И.Н., Джайлоев Дж.Х., Киреев С.Ю., Янгуразова А.З., Кирили-на Ю.Н., Муллоева М.Н. Коррозионная стойкость свинца, легированного медью, в растворе хлорида натрия. Практика противокоррозион-ной защиты. 2025;30(2):56–63.
  18. https://doi.org/10.31615/j.corros.prot.2025.116.2-5
  19. Ганиев И.Н., Саидов М.М., Файзуллоев У.Н., Худойбердизода С.У. Потенциостатическое исследование алюминиевого сплава AM4.5Mг1 типа дуралюмин с лантаном в среде водного раствора NaCl. Вестник Кузбасского государственного технического университета. 2024;1(161):23–33.
  20. https://doi.org/10.26730/1999-4125-2024-1-23-33
  21. Ганиев И.Н., Саидова Ф.Р., Худойбердизо- да С.У., Савдуллоева С.С., Джайлоев Д.Х., Абулхаев В.Д. Анодное поведение алюминиевого сплава АlМg5.5Li2.1Zr0.15 легированного кальцием в среде электролита NaCl. Известия Санкт-Петербургского государственного технологического института (технического университета). 2023;65(91):37–41. https://doi.org/10.36807/1998-9849-2023-65-91-37-41

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Журнал «Вестник Сибирского государственного индустриального университета»

Свидетельство о регистрации: ПИ № ФС77-77872 от 03.03.2020 г.

Журнал имеет международный стандартный номер сериального издания ISSN 2304-4497 (Print) и подписной индекс в каталоге «Урал-Пресс» – 41270

Учредитель:

ФГБОУ ВО «Сибирский государственный индустриальный университет»

Адрес редакции:

654007, Кемеровская обл. – Кузбасс, г. Новокузнецк, Центральный район, ул. Кирова, зд. 42, Сибирский государственный индустриальный университет, каб. 483гт, тел. 8-950-270-44-88

Ответственный за выпуски: Запольская Е.М. 

Издатель: Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный индустриальный университет», г. Новокузнецк, Россия

Исключительные авторские права на статьи принадлежат авторам ©

Обработка персональных данных

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).