STRESS-STRAIN STATE OF THE SURFACE OF A HIGH-SPEED MOLYBDENUM STEEL COATING OBTAINED BY PLASMA SURFACING

Cover Page

Cite item

Abstract

The evolution of the stress-strain state of a molybdenum high-speed steel coating during electron beam processing has been studied. The model was based on the equations of thermoelasticity and thermal conductivity. The model of linear isotropic hardening was used as the main model of the plasticity of the material. At the upper boundary of the calculated area, the heat flow was set taking into account the evaporation losses of the substance, and it was considered stress-free. At the lower boundary, the heat flow and displacement were considered to be zero. Periodic boundary conditions for temperature and displacement were set at the lateral boundaries of the computational domain. The distributions of temperature and components of the stress tensor over the distance from the irradiation surface at various time points are established. It is shown that the action of an electron beam leads to the formation of a bipolar thermoelastic wave with stable poles in the region of tensile and compressive stresses, which are located at distances of 4.2754 and 12.826 μm from the irradiation surface. The appearance of a maximum of tensile stresses is caused by both the formation of a stretching wave and quenching effects, as well as the presence of carbide phases. The maximum of compressive stresses is caused by the superposition of incident and reflected thermoelastic waves. The distribution of equivalent plastic deformations over the distance from the irradiation surface is obtained. His analysis showed that, regardless of time, a layer up to 20 μm thick is affected by plastic deformation. The highest values (approximately 1.97) are observed near the surface of the material. The areas of greatest plastic deformations are arranged in a pattern. This is a consequence of the appearance of maxima of the positive and negative components of the stress tensor in the range from 4 to 15 μm. This distribution of equivalent plastic deformations explains the appearance of the microcrack network observed on electron microscopic images.

About the authors

Sergei A. Nevskii

Siberian State Industrial University

Author for correspondence.
Email: nevskiy_sa@physics.sibsiu.ru
ORCID iD: 0000-0001-7032-9029
SPIN-code: 1424-5899

младший научный сотрудник

Russian Federation

Lyudmila P. Bashchenko

Siberian State Industrial University

Email: luda.baschenko@gmail.com
ORCID iD: 0000-0003-1878-909X
SPIN-code: 5942-8145

Irina V. Baklushina

Siberian State Industrial University

Email: baklushina_iv@sibsiu.ru
ORCID iD: 0000-0003-4487-3260
SPIN-code: 9087-6310

Viktor E. Gromov

Siberian State Industrial University

Email: gromov@physics.sibsiu.ru
ORCID iD: 0000-0002-5147-5343
SPIN-code: 2834-4090

Dmitriy D. Mikhailov

Siberian State Industrial University

Email: dima.mi1999@mail.ru
SPIN-code: 9743-6397

Anastasia N. Gostevskaya

Siberian State Industrial University

Email: lokon1296@mail.ru
ORCID iD: 0000-0002-7328-5444
SPIN-code: 2230-2454

References

  1. Мозговой И.В., Шнейдер Е.А. Наплавка быстрорежущей стали. Омск: Изд-во ОмГТУ, 2016:200.
  2. Кремнев Л.С., Онегина А.К., Виноградова Л.А. Особенности превращений, структуры и свойств молибденовых быстрорежущих сталей. Металловедение и термическая обработка металлов. 2009;12(654):13–19.
  3. Кремнев Л.С. Теория легирования и создание на ее основе теплостойких инструментальных сталей и сплавов. МиТОМ. 2008;(11):18–28.
  4. Dou B., Zhang H., Tao Y. et al. Effect of Fe on type and distribution of carbides in medium-entropy high-speed steels. Tungsten. 2023;5:189–197.
  5. Bingyan Duan, Naiming Lin, Haichao Zhao, Li Zhou, Xin Wang, Guozheng Ma, Haidou Wang, Quanxin Shi, Yucheng Wu. Microstructure and tribological performance of FeCrNiMox medium-entropy alloy (MEA) coatings by high-speed laser cladding: Effect of molybdenum content. Journal of Alloys and Compounds. 2025.
  6. https://doi.org/10.1016/j.jallcom.2025.181001
  7. Askari Marzieh, Khorrami Mahmoud Sarkari, Sohi Mahmoud Heydarzadeh. Effect of molybdenum content on the microstructural characteristic of surface cladded CoCrFeNi high entropy on AISI420 martensitic stainless steel. Materials Today Communications. 2025;43:111729. https://doi.org/10.1016/j.mtcomm.2025.111729
  8. Pat. DE19508947A1. New wear resistant iron-molybdenum-tungsten alloy. Feng Dipl Ing Li; publ. 19.09.1996.
  9. Малушин Н.Н., Романов Д.А., Ковалев А.П., Осетковский В.Л., Бащенко Л.П. Структурно-фазовое состояние теплостойкого сплава высокой твердости, сформированного плазменной наплавкой в среде азота и высокотемпературным отпуском. Известия вузов. Физика. 2019;62(10(742)):106–111.
  10. https://doi.org/10.17223/00213411/62/10/106
  11. Ivanov Yu.F., Gromov V.E., Potekaev A.I., Guseva T.P. et al. Structure and properties of R18U surfacing of high-speed steel after its high tempering. Russian Physics Journal. 2023;66(7):731–739.
  12. Ivanov K.V., Voronov A.V. Evolution of morphology, microstructure and phase composition of zirconia thin coating on copper as a result of low energy high current pulsed electron beam irradiation. Surf. Coating. Technol. 2023;456:129257. https://doi.org/10.1016/j.surfcoat.2023.129257
  13. Wenhai Peng, Shengzhi Hao, Limin Zhao, Ziqi Li, Jun Chen, Jia’ni Lan, Xinglei Wang, Kaiyi Wang. Thermal stability of modified surface microstructure on WC‒Co cemented carbide after high current pulsed electron beam irradiation. Journal of Alloys and Compounds. 2020;829:154545. https://doi.org/10.1016/j.jallcom.2020.154545
  14. Qin Y., Dong C., Wang X.G., Hao S.Z., Wu A.M., Zou J.X., Liu Y. Temperature profile and crater formation induced in high-current pulsed electron beam processing. J. Vac. Sci. Technol. 2003;21:1934–1938.
  15. http://dx.doi.org/10.1116/1.1619417
  16. Qin Y., Zou J., Dong C., Wang X., Wu A., Liu Y., Hao S., Guan Q. Temperaturestress fields and related phenomena induced by a high current pulsed electron beam. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2004;225:544–554.
  17. Марков А.Б., Ротштейн В.П. Термический и деформационно-волновой механизмы упрочнения углеродистой стали при воз-действии высокоэнергетического сильно-точного электронного пучка. ФиХОМ. 1997;(6):36–41.
  18. Сарычев В.Д., Волошина М.С., Громов В.Е. Математическая модель генерации термоупругих волн при воздействии концентрированных потоков энергии на материалы. Фундаментальные проблемы современного материаловедения. 2011;8(4):71–76.
  19. Галанин М.П., Гузев М.А, Низкая Т.В. Разработка и реализация вычислительного алгоритма для расчета температурных напряжений, возникающих при нагреве металла, с учетом фазовых переходов. Препринты ИПМ им. М.В. Келдыша. 2005;139:19.
  20. Марочник сталей и сплавов / Под ред. А.С. Зубченко. Москва: Машиностроение, 2003:782.
  21. Saunders N., Guo,U.K.Z., Li X. et al. Using JMatPro to model materials properties and behavior. JOM. 2003;55:60–65.
  22. https://doi.org/10.1007/s11837-003-0013-2
  23. Konovalov S., Chen X., Sarychev V., Nevskii S., Gromov V., Trtica M. Mathematical modeling of the concentrated energy. Metals. 2017;7(4):1–18.
  24. Громов В.Е., Иванов Ю.Ф., Баклушина И.В., Емелюшин А.Н., Шлярова Ю.А. Плазменная наплавка быстрорежущей молибденовой стали: структура и свойства. Новокузнецк: Полиграфист, 2025:176
  25. Yuriev A.B., Ivanov Y.F., Gromov V.E., Klopotov A.A., Minenko S.S., Chapaikin A.S., Semin A.P. Structure and properties of surfacing made of high-entropy high-speed steel. Russ Phys J. 2024;67:915–922.
  26. https://doi.org/10.1007/s11182-024-03196-z
  27. Майер А.Е., Яловец А.П. Механические напряжения в облучаемой мишени с воз-мущенной поверхностью. ЖТФ. 2006;76(В.4):67–73.

Supplementary files

Supplementary Files
Action
1. JATS XML

Журнал «Вестник Сибирского государственного индустриального университета»

Свидетельство о регистрации: ПИ № ФС77-77872 от 03.03.2020 г.

Журнал имеет международный стандартный номер сериального издания ISSN 2304-4497 (Print) и подписной индекс в каталоге «Урал-Пресс» – 41270

Учредитель:

ФГБОУ ВО «Сибирский государственный индустриальный университет»

Адрес редакции:

654007, Кемеровская обл. – Кузбасс, г. Новокузнецк, Центральный район, ул. Кирова, зд. 42, Сибирский государственный индустриальный университет, каб. 483гт, тел. 8-950-270-44-88

Ответственный за выпуски: Запольская Е.М. 

Издатель: Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный индустриальный университет», г. Новокузнецк, Россия

Исключительные авторские права на статьи принадлежат авторам ©

Обработка персональных данных

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).