Antagonistic activity of fungal symbionts associated with black truffle

Cover Page

Cite item

Full Text

Abstract

Recent decades have seen increased interest in black truffles due to their gastronomic properties, high nutritional value, and potential medicinal properties. An important contribution to the specific aroma and nutritional value of these fungi is made by the community of microorganisms that inhabit truffle fruiting bodies. The present study aims to isolate pure cultures of cultivated fungal symbionts, assess their mutual antagonism, and consider their ecological role. The experiment involved collecting the fruiting bodies of the black truffle, which were used to isolate pure cultures of fungal symbionts. As a result, eight fungal strains were identified. The antagonistic properties of the obtained strains were evaluated using the agar-well method. Six of the eight strains exhibited antagonistic activity. The highest activity was exhibited by the Fusarium sp. strain LPB2023712, which inhibited the growth of six other strains with the maximum inhibition zone of ±3.3 cm. Also, significant activity was observed in the strains of Trichothecium sp. and Hypopichia sp., which inhibited the growth of Clonostachys sp. and Penicillium sp. The obtained results indicate the important role of fungal symbionts in the ecology of truffles, including their ability to regulate the microbial community and inhibit the development of pathogens in fruiting bodies. The Fusarium sp. strain LPB2023712 demonstrated potential to serve as a biocontrol agent, which opens up new opportunities to find biologically active compounds and develop methods for improving the resistance of truffles to disease. This study emphasizes the need for further research on truffles and associated microorganisms to gain a deeper understanding of their ecological functions, interactions, and practical applications in agriculture and biotechnology.

About the authors

N. A. Imidoeva

Irkutsk State University

Email: nat.imidoeva@gmail.com
ORCID iD: 0000-0002-6327-5517

E. V. Malygina

Irkutsk State University

Email: cat.malygina@gmail.com
ORCID iD: 0000-0002-2673-0226

A. Yu. Belyshenko

Irkutsk State University

Email: al.belyshenko@gmail.com
ORCID iD: 0000-0002-8812-2250

T. N. Vavilina

Irkutsk State University

Email: t.vavilina03@mail.ru
ORCID iD: 0009-0001-9725-9523

V. N. Shelkovnikova

Irkutsk State University

Email: shelkovnikova551@gmail.com
ORCID iD: 0000-0002-4411-7521

M. E. Dmitrieva

Irkutsk State University

Email: marriee.dmitrieva@gmail.com
ORCID iD: 0000-0002-9229-1954

M. M. Morgunova

Irkutsk State University

Email: marymikhmorg@gmail.com
ORCID iD: 0000-0002-7939-1432

T. Yu. Telnova

Irkutsk State University

Email: telnovatamara1410@gmail.com
ORCID iD: 0000-0003-2606-3766

A. A. Batalova

Irkutsk State University

Email: ann.batalovaa@gmail.com
ORCID iD: 0009-0007-1343-4544

D. V. Axenov-Gribanov

Irkutsk State University

Email: denis.axengri@gmail.com
ORCID iD: 0000-0003-2020-6084

References

  1. Wilgan R. High species diversity but low specificity to ectomycorrhizal tree partners exhibited by native truffle species (Tuber spp., Pezizales) in Poland, Central Europe. Forests. 2023;14(12):2407. doi: 10.3390/f14122407.
  2. Zambonelli A., Iotti M., Murat C. True truffle (Tuber spp.) in the world. Cham: Springer; 2016, 436 p. doi: 10.1007/978-3-319-31436-5.
  3. Splivallo R., Ottonello S., Mello A., Karlovsky P. Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytologist. 2011;89(3):688-699. doi: 10.1111/j.1469-8137.2010.03523.x.
  4. Saltarelli R., Ceccaroli P., Cesari P., Barbieri E., Stocchi V. Effect of storage on biochemical and microbiological parameters of edible truffle species. Food Chemistry. 2008;109(1):8-16. doi: 10.1016/j.foodchem.2007.11.075.
  5. Lee H., Nam K., Zahra Z., Farooqi M.Q.U. Potentials of truffles in nutritional and medicinal applications: a review. Fungal Biology and Biotechnology. 2020;7:9. doi: 10.1186/s40694-020-00097-x.
  6. Kaya Y., Akcura M. Effects of genotype and environment on grain yield and quality traits in bread wheat (T. aestivum L.). Food Science and Technology. 2014;34(2):386-393. doi: 10.1590/fst.2014.0041.
  7. Shah N., Usvalampi A., Chaudhary S., Seppänen-Laakso T., Marathe S., Bankar S., et al. An investigation on changes in composition and antioxidant potential of mature and immature summer truffle (Tuber aestivum). European Food Research and Technology. 2020;246:723-731. doi: 10.1007/s00217-020-03438-7.
  8. Pavić A., Stanković S., Saljnikov E., Krüger D., Buscot F., Tarkka M., et al. Actinobacteria may influence white truffle (Tuber magnatum Pico) nutrition, ascocarp degradation and interactions with other soil fungi. Fungal Ecology. 2013;6(6):527-538. doi: 10.1016/j.funeco.2013.05.006.
  9. Leonardi M., Iotti M., Pacioni G., Hall I.R., Zambonelli A. Truffles: biodiversity, ecological significances, and biotechnological applications. In: Abdel-Azeem A.M., Yadav A.N., Yadav N., Usmani Z. (eds). Industrially Important Fungi for Sustainable Development. Fungal Biology. Springer: Cham; 2021, p. 107–146. doi: 10.1007/978-3-030-67561-5_4.
  10. Delong R.K., Zhou Q. Experiment 2 – Preparing buffers at a specific molarity and pH. In: Introductory Experiments on Biomolecules and their Interactions. Academic Press, 2015, p. 13–19. doi: 10.1016/B978-0-12-800969-7.00002-5.
  11. Black W.D. A comparison of several media types and basic techniques used to assess outdoor airborne fungi in Melbourne, Australia. PLOS One. 2020;15(12):e0238901. doi: 10.1371/journal.pone.0238901.
  12. Magaldi S., Mata-Essayag S., de Capriles C.H., Perez C., Colella M.T., Olaizola C., et al. Well diffusion for antifungal susceptibility testing. International Journal of Infectious Diseases. 2004;8(1):39-45. doi: 10.1016/j.ijid.2003.03.002.
  13. Mohamed A.H., El-Megeed F.H.A., Hassanein N.M., Youseif S.H., Farag P.F., Saleh S.A., et al. Native rhizospheric and endophytic fungi as sustainable sources of plant growth promoting traits to improve wheat growth under low nitrogen input. Journal of Fungi. 2022;8(2):94. doi: 10.3390/jof8020094.
  14. Zvonarev A., Terentyev V., Zhelifonova V., Antipova T., Baskunov B., Avtukh A., et al. Phytotoxic strains of Fusarium commune isolated from truffles. Journal of Fungi. 2024;10(7):463. doi: 10.3390/jof10070463.
  15. Sun Z.-B., Li S.-D., Ren Q., Xu J.-L., Lu X., Sun M.-H. Biology and applications of Clonostachys rosea. Journal of Applied Microbiology. 2020;129(3):486-495. doi: 10.1111/jam.14625.
  16. Rennick B., Benucci G.M.N., Du Z.-Y., Healy R., Bonito G. Tuber rugosum, a new species from northeastern North America: slug mycophagy aids in electron microscopy of ascospores. Mycologia. 2023;115(3):340-356. doi: 10.1080/00275514.2023.2184983.
  17. Leonardi M., Ascione S., Pacioni G., Cesare P., Pacioni M.L., Miranda M., et al. The challenge for identifying the fungi living inside mushrooms: the case of truffle inhabiting mycelia. Plant Biosystems. 2018;152(5):1002-1010. doi: 10.1080/11263504.2017.1407373.
  18. Ren Y.-C., Liu S.-T., Li Y., Hui F.-L. Pichia dushanensis sp. nov. and Hyphopichia paragotoi sp. nov., two sexual yeast species associated with insects and rotten wood. International Journal of Systematic and Evolutionary Microbiology. 2015;65:2875-2881. doi: 10.1099/ijs.0.000349.
  19. Lee D.W., Hong C.P., Thak E.J., Park S.-G., Lee C.H., Lim J.Y., et al. Integrated genomic and transcriptomic analysis reveals unique mechanisms for high osmotolerance and halotolerance in Hyphopichia yeast. Environmental Microbiology. 2021;23(7):3499-3522. doi: 10.1111/1462-2920.15464.
  20. Sánchez-Ledesma J.A., Guevara-Guerrero G., Garibay-Orijel R., Ángeles-Argáiz R., Ávila-Rodríguez V., Arreola-Ávila J.G., et al. Tuber caryophilum, a new truffle species growing in Carya illinoinensis orchards. Revista Mexicana de Biodiversidad. 2022;93:e934893. doi: 10.22201/ib.20078706e.2022.93.4893.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).