Comparative evaluation of enzyme cocktails for conversion of pretreated oat hulls
- Authors: Kashcheyeva E.I.1, Budaeva V.V.1, Zolotukhin V.N.1
-
Affiliations:
- Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 15, No 3 (2025)
- Pages: 347-356
- Section: Physico-chemical biology
- URL: https://ogarev-online.ru/2227-2925/article/view/366154
- DOI: https://doi.org/10.21285/achb.990
- EDN: https://elibrary.ru/BJADRE
- ID: 366154
Cite item
Full Text
Abstract
About the authors
E. I. Kashcheyeva
Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences
Email: massl@mail.ru
ORCID iD: 0000-0003-1593-7982
V. V. Budaeva
Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences
Email: budaeva@ipcet.ru
ORCID iD: 0000-0002-1628-0815
V. N. Zolotukhin
Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences
Email: zolotukhin_vn@mail.ru
ORCID iD: 0000-0002-9630-6332
References
- Tuan L., Anne-Archard D., Cameleyre X., Lombard E., To K.A., Pham T.A., et al. Rheological investigation of complex lignocellulosic suspensions during hydrolysis using pure and cocktail of enzymes // Bioresource Technology. 2025. Vol. 426. P. 132333. doi: 10.1016/j.biortech.2025.132333.
- Moya E.B., Syhler B., Dragone G., Mussatto S.I. Tailoring a cellulolytic enzyme cocktail for efficient hydrolysis of mildly pretreated lignocellulosic biomass // Enzyme and Microbial Technology. 2024. Vol. 175. P. 110403. doi: 10.1016/j.enzmictec.2024.110403.
- Yamakawa C.K., Qin F., Mussatto S.I. Advances and opportunities in biomass conversion technologies and biorefineries for the development of a bio-based economy // Biomass and Bioenergy. 2018. Vol. 119. P. 54–60. doi: 10.1016/j.biombioe.2018.09.007.
- Liang C., Long Y., Wang W., Zhang Y., Xing S., Chen Z., et al. Correlation and synergy between fungal secretome cellulolytic enzyme cocktails and commercial cellulase for woody biomass degradation // Renewable Energy. 2025. Vol. 240. P. 122158. doi: 10.1016/j.renene.2024.122158.
- Semenova M.V., Rozhkova A.M., Osipov D.O., Telitsin V.D., Rubtsova E.A., Kondrat’eva E.G., et al. Methods for preprocessing reeds to obtain enzymatic hydrolysates with a high sugar content // Applied Biochemistry and Microbiology. 2024. Vol. 60. P. 931–941. doi: 10.1134/S0003683824604736.
- Mankar A.R., Pandey A., Modak A., Pant K.K. Pretreatment of lignocellulosic biomass: a review on recent advances // Bioresource Technology. 2021. Vol. 334. P. 125235. doi: 10.1016/j.biortech.2021.125235.
- Петухова О.С., Приставка А.А., Приставка Е.А., Гавриков Д.Е., Саловарова В.П. Сравнительный анализ структурно-функциональных особенностей эндоглюканаз с разным температурным оптимумом действия // Известия вузов. Прикладная химия и биотехнология. 2024. Т. 14. N 4. С. 596–604. doi: 10.21285/achb.946. EDN: SRPVFQ.
- Adsul M., Sandhu S.K., Singhania R.R., Gupta R., Puri S.K., Mathur A. Designing a cellulolytic enzyme cocktail for the efficient and economical conversion of lignocellulosic biomass to biofuels // Enzyme and Microbial Technology. 2020. Vol. 133. P. 109442. doi: 10.1016/j.enzmictec.2019.109442.
- Agrawal R., Satlewal A., Gaur R., Mathur A., Kumar R., Gupta R.P., et al. Pilot scale pretreatment of wheat straw and comparative evaluation of commercial enzyme preparations for biomass saccharification and fermentation // Biochemical Engineering Journal. 2015. Vol. 102. P. 54–61. doi: 10.1016/J.BEJ.2015.02.018.
- Soleimani S., Ranaei-Siadat S.-O., Preparation and optimization of cellulose cocktail to improve the bioethanol process // Biofuels. 2017. Vol. 8, no. 2. P. 291–296. doi: 10.1080/17597269.2016.1224293.
- Shevchenko A.R., Mayorova K.A., Chukhchin D.G., Malkov A.V., Toptunov E.A., Telitsin V. D., et al. Enzymatic hydrolysis of kraft and sulfite pulps: what is the best cellulosic substrate for industrial saccharification? // Fermentation. 2023. Vol. 9, no. 11. P. 936. doi: 10.3390/fermentation9110936.
- Серба Е.М., Римарева Л.В., Оверченко М.Б., Игнатова Н.И., Медриш М.Э., Павлова А.А.. Подбор мультиэнзимной композиции и условий подготовки концентрированного зернового сусла // Известия вузов. Прикладная химия и биотехнология. 2021. Т. 11. N 3. С. 384–392. doi: 10.21285/2227-2925-2021-11-3-384-392. EDN: YEIIZV.
- Li J., Zhou P., Liu H., Xiong C., Lin J., Xiao W., et al. Synergism of cellulase, xylanase, and pectinase on hydrolyzing sugarcane bagasse resulting from different pretreatment technologies // Bioresource Technology. 2014. Vol. 155. P. 258–265. doi: 10.1016/j.biortech.2013.12.113.
- Kurschner K., Hoffer A. Cellulose and cellulose derivative // Fresenius’ Journal of Analytical Chemistry. 1993. Vol. 92. P. 145–154.
- Pavlov I.N. A setup for studying the biocatalytic conversion of products from the processing of nonwood raw materials // Catalysis in Industry. 2014. Vol. 6. P. 355–360. doi: 10.1134/S207005041404014X.
- Miller G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar // Analytical Chemistry. 1959. Vol. 31, no. 3. P. 426–428. doi: 10.1021/ac60147a030.
- Dotsenko A., Gusakov A., Rozhkova A., Sinitsyna O., Shashkov I., Sinitsyn A. Enzymatic hydrolysis of cellulosic materials using synthetic mixtures of purified cellulases bioengineered at N-glycosylation sites // 3 Biotech. 2018. Vol. 8. P. 396. doi: 10.1007/s13205-018-1419-4.
- Shi J., Wu Y., Zhang S., Tian Y., Yang D., Jiang Z. Bioinspired construction of multi-enzyme catalytic systems // Chemical Society Reviews. 2018. Vol. 47, no. 12. P. 4295–4313. doi: 10.1039/C7CS00914C.
- Rohrbach J.C., Luterbacher J.S. Investigating the effects of substrate morphology and experimental conditions on the enzymatic hydrolysis of lignocellulosic biomass through modeling // Biotechnology for Biofuels and Bioproducts. 2021. Vol. 14. P. 103. doi: 10.1186/s13068-021-01920-2.
- Schläfle S., Tervahartiala T., Senn T., Kölling-Paternoga R. Quantitative and visual analysis of enzymatic lignocellulose degradation // Biocatalysis and Agricultural Biotechnology. 2017. Vol. 11. P. 42–49. doi: 10.1016/j.bcab.2017.06.002.
- Zeng M., Mosier N.S., Huang C.-P., Sherman D.M., Ladisch M.R. Microscopic examination of changes of plant cell structure in corn stover due to hot water pretreatment and enzymatic hydrolysis // Biotechnology and Bioengineering. 2007. Vol. 97, no. 2. Р. 265–278. doi: 10.1002/bit.21298.
- Земнухова Л.А., Скиба Е.А., Будаева В.В., Панасенко А.Е., Полякова Н.В. Состав неорганических компонентов шелухи овса и продуктов ее химической и ферментативной трансформации // Журнал прикладной химии. 2018. Т. 91. N 2. С. 217–221. EDN: YRVLZF.
- Kaur P., Singh S., Sharma N., Agrawal R. Filling in the gaps in second-generation biorefineries: evaluating rice straw and its bioethanol residue for the production of biogenic silica nanoparticles // Nanotechnology for Environmental Engineering. 2024. Vol. 9. Р. 67–76. doi: 10.1007/s41204-023-00351-8.
- Zemnukhova L.A., Egorov A.G., Fedorishcheva G.A., Barinov N.N., Sokol’Nitskaya T.A., Botsul A.I. Properties of amorphous silica produced from rice and oat processing waste // Inorganic Materials. 2006. Vol. 42. P. 24–29. doi: 10.1134/S0020168506010067.
- Prempeh C.O., Formann S., Schliermann T., Dizaji H.B., Nelles M. Extraction and characterization of biogenic silica obtained from selected agro-waste in Africa // Applied Sciences. 2021. Vol. 11, no. 21. P. 10363. doi: 10.3390/app112110363.
- Вистовская В.П., Кожемякин Д.С., Каменская Е.П. Оптимизация параметров ферментолиза подсолнечной лузги с использованием методов математического моделирования // Ползуновский вестник. 2025. N 1. С. 103–109. doi: 10.25712/ASTU.2072-8921.2025.01.012. EDN: USIKBN.
Supplementary files


