Optimization of culture medium for submerged cultivation of Mycolicibacterium neoaurum AC-3067D – a beta-carotene producing strain

Cover Page

Cite item

Full Text

Abstract

The replacement of glucose with glycerol has demonstrated the most significant influence on beta-carotene biosynthesis using Mycolicibacterium neoaurum AC-3067D. However, from a technological standpoint, residual glycerol hinders the drying of biomass, which can be used to produce feed additives for poultry and livestock. This study aims to determine the optimal concentrations of glycerol, glucose, and Tween 80 using a 23 full factorial experiment, along with testing an optimized medium during the deep cultivation of Mycolicibacterium neoaurum in a 3L bioreactor. We evaluated the accumulation of Mycolicibacterium neoaurum biomass and beta-carotene content in response to the replacement of 20 g/L glycerol with a combination of 10 g/L glycerol and 10 g/L glucose. The results demonstrated comparable productivity of the strain between the modified and control media, yielding 17.8 g/L biomass and 182.5 mg/kg beta-carotene. The study showed that the incorporation of Tween 80 (1 g/L) into the nutrient medium resulted in a 14.0% and 32.2% increase in biomass and beta-carotene yield, respectively, in comparison to the control. The medium, optimized using a 2 3 full factorial experiment, contained glycerol (15.0 g/L), glucose (5.0 g/L), and Tween 80 (1.5 g/L). The cultivation of Mycolicibacterium neoaurum in a bioreactor using this growth medium resulted in a maximum productivity of 376.5 mg/kg of beta-carotene and 25.2 g/L of biomass.

About the authors

V. V. Yaderets

Russian Biotechnological University (BIOTECH University)

Email: verayaderetz@yandex.ru
ORCID iD: 0000-0002-5220-7877

N. V. Karpova

Russian Biotechnological University (BIOTECH University)

Email: ashatanr@mail.ru
ORCID iD: 0000-0002-6652-4136

E. V. Glagoleva

Russian Biotechnological University (BIOTECH University)

Email: glagolevaev@mail.ru
ORCID iD: 0000-0002-3894-0255

V. A. Tsyganov

Russian Biotechnological University (BIOTECH University)

Email: ts_wladimir@inbox.ru
ORCID iD: 0000-0002-3658-519X

A. S. Shibaeva

Russian Biotechnological University (BIOTECH University)

Email: aleksandrashibaeva@mail.ru
ORCID iD: 0000-0002-1115-6532

V. V. Dzhavakhiya

Russian Biotechnological University (BIOTECH University)

Email: vahoru@mail.ru
ORCID iD: 0000-0002-5161-5051

References

  1. Pagels F., Vasconcelos V., Guedes A.C. Carotenoids from сyanobacteria: biotechnological potential and optimization strategies // Biomolecules. 2021. Vol. 11, no. 5. P. 735. doi: 10.3390/biom11050735.
  2. Maoka T. Carotenoids as natural functional pigments // Journal of Natural Medicines. 2020. Vol. 74. P. 1–16. doi: 10.1007/s11418-019-01364-x.
  3. Ashokkumar V., Flora G., Sevanan M., Sripriya R., Chen W.H., Park J.-H., et al. Technological advances in the production of carotenoids and their applications – а critical review // Bioresource Technology. 2023. Vol. 367. P. 128215. doi: 10.1016/j.biortech.2022.128215.
  4. Foong L.C., Loh C.W.L., Ng H.S., Lan J.C.-W. Recent development in the production strategies of microbial carotenoids // World Journal of Microbiology and Biotechnology. 2021. Vol. 37. P. 12. doi: 10.1007/s11274-020-02967-3.
  5. Novoveská L., Ross M.E., Stanley M.S., Pradelles R., Wasiolek V., Sassi J.-F. Microalgal carotenoids: a review of production, current markets, regulations, and future direction // Marine Drugs. 2019. Vol. 17, no. 11. P. 640. doi: 10.3390/md17110640.
  6. Jing Y., Wang Y., Zhou D., Wang J., Li J., Sun J., et al. Advances in the synthesis of three typical tetraterpenoids including β-carotene, lycopene and astaxanthin // Biotechnology Advances. 2022. Vol. 61. P. 108033. doi: 10.1016/j.biotechadv.2022.108033.
  7. Naz T., Ullah S., Nazir Y., Li S., Iqbal B., Liu Q., et al. Industrially important fungal carotenoids: advancements in biotechnological production and extraction // Journal of Fungi. 2023. Vol. 9, no. 5. P. 578. doi: 10.3390/jof9050578.
  8. Silva Igreja W., de Andrade Maia F., Santos Lopes A., Campos Chisté R. Biotechnological production of carotenoids using low cost-substrates is influenced by cultivation parameters: a review // International Journal of Molecular Sciences. 2021. Vol. 22, no. 16. P. 8819. doi: 10.3390/ijms22168819.
  9. Luo W., Gong Z., Li N., Zhao Y., Zhang H., Yang X., et al. A negative regulator of carotenogenesis in Blakeslea trispora // Applied and Environmental Microbiology. 2020. Vol. 86, no. 6. P. e02462–e024619. doi: 10.1128/AEM.02462-19.
  10. Roukas T. The role of oxidative stress on carotene production by Blakeslea trispora in submerged fermentation // Critical Reviews in Biotechnology. 2016. Vol. 36, no. 3. P. 424–433. doi: 10.3109/07388551.2014.989424.
  11. Shariati S., Zare D., Mirdamadi S. Screening of carbon and nitrogen sources using mixture analysis designs for carotenoid production by Blakeslea trispora // Food Science and Biotechnology. 2019. Vol. 28. P. 469–479. doi: 10.1007/s10068-018-0484-0.
  12. Gong G., Liu L., Zhang X., Tan T. Comparative evaluation of different carbon sources supply on simultaneous production of lipid and carotene of Rhodotorula glutinis with irradiation and the assessment of key gene transcription // Bioresource Technology. 2019. Vol. 288. P. 121559. doi: 10.1016/j.biortech.2019.121559.
  13. Kot A.M., Błażejak S., Kurcz A., Gientka I., Kieliszek M. Rhodotorula glutinis – potential source of lipids, carotenoids, and enzymes for use in industries // Applied Microbiology and Biotechnology. 2016. Vol. 100. P. 6103–6117. doi: 10.1007/s00253-016-7611-8.
  14. Tran T., Dawrs S.N., Norton G.J., Virdi R., Honda J.R. Brought to you courtesy of the red, white, and blue-pigments of nontuberculous mycobacteria // AIMS Microbiology. 2020. Vol. 6, no. 4. P. 434–450. doi: 10.3934/microbiol.2020026.
  15. Yaderets V.V., Karpova N., Glagoleva E.V., Shibaeva A., Dzhavakhiya V. Enhanced β-carotene production in Mycolicibacterium neoaurum Ac-501/22 by combining mutagenesis, strain selection, and subsequent fermentation optimization // Fermentation. 2023. Vol. 9, no. 12. P. 1007. doi: 10.3390/fermentation9121007.
  16. Попова Е.Д., Глаголев В.И., Савушкин В.А., Овчинников А.И., Савельева В.В., Джавахия В.В.. Оптимизация ферментационной среды для культивирования штамма Amycolatopsis orientalis VKM Ac-2717D – продуцента антибиотика эремомицина // Международный научно-исследовательский журнал. 2017. N 1-2. С. 16–21. doi: 10.23670/IRJ.2017.55.008. EDN: XRHEUX.
  17. Donova M.V., Nikolayeva V.M., Dovbnya D.V., Gulevskaya S.A., Suzina N.E. Methyl-β-cyclodextrin alters growth, activity and cell envelope features of sterol-transforming mycobacteria // Microbiology. 2007. Vol. 153, no. 6. P. 1981–1992. doi: 10.1099/mic.0.2006/001636-0.
  18. Murillo F.J., Torres-Martinez S., Aragon C.M.G., Cerda-Olmedo E. Substrate transfer in carotene biosynthesis in phycomyces // European Journal of Biochemistry. 1981. Vol. 119, no. 3. P. 511–516. doi: 10.1111/j.1432-1033.1981.tb05637.x.
  19. Dyaa A., Soliman H., Abdelrazak A., Samra B.N., Khojah E., Ahmed A.F., et al. Optimization of carotenoids production from Rhodotorula sp. strain ATL72 for enhancing its biotechnological applications // Journal of Fungi. 2022. Vol. 8, no 2. P. 160. doi: 10.3390/jof8020160.
  20. Ekpenyong M., Asitok A., Antigha R., Ogarekpe N., Ekong U., Asuquo M., et al. Bioprocess optimization of nutritional parameters for enhanced anti-leukemic l-asparaginase production by Aspergillus candidus UCCM 00117: a sequential statistical approach // International Journal of Peptide Research and Therapeutics. 2021. Vol. 27. P. 1501–1527. doi: 10.1007/s10989-021-10188-x.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).