Identification and diversity analysis of CRISPR-Cas systems in the pathogenic strains of Clostridium botulinum to create eco-friendly phage preparations

Cover Page

Cite item

Full Text

Abstract

The article presents a bioinformatic study of the diversity of CRISPR-Cas systems in the genomes of Clostridium botulinum and the phages they detect, with the aim of their targeted screening. The subject matter of the study was 49 complete chromosomal sequences of bacteria obtained from the GenBank database. Cas genes were identified employing the MacSyFinder tool with the use of HMM profiles from the PFAM and TIGRFAM databases. The identification and analysis of CRISPR cassettes were performed using three independent programs: CRISPRFinder, PILER-CR, and CRISPR Recognition Tool, which ensured high accuracy in determining the cassette structure. Protospacers were identified using the CRISPRTarget tool and the BLASTn algorithm against RefSeq-Viral viral databases. The study involved comparing spacer sequences and phage genomes in order to identify complementary sites. A phage immunity analysis revealed a predominance of Cellulophaga phages (19%), which can be attributed to the environmental characteristics of Clostridium botulinum, as well as a significant proportion of Aeromonas and Bacillus phages (12.5%). Another group of phages (predominantly intestinal) included Enterococcus, Escherichia, and Lactococcus species (6–10%). Also, the protospacers of rare phages (3% each) were found: Acidianus filamentous, Prochlorococcus, Pseudoalteromonas, Stenotrophomonas, and Synechococcus. The obtained results indicate complex CRISPR-Cas systems in Clostridium botulinum, evolving under the impact of different ecological niches.

About the authors

G. A. Teterina

Irkutsk State University

Email: galina.teterina.91@mail.ru
ORCID iD: 0009-0007-0487-8223

V. P. Salovarova

Irkutsk State University

Email: vsalovarova@gmail.com
ORCID iD: 0000-0002-3693-9058

Yu. P. Dzhioev

Irkutsk State Medical University

Email: alanir07@mail.ru
ORCID iD: 0000-0001-5410-5113

N. A. Arefieva

Irkutsk State University; Irkutsk State Medical University; Scientific Centre for Family Health and Human Reproduction Problems

Email: arefieva.n4@gmail.com
ORCID iD: 0000-0003-2222-4518

A. Yu. Borisenko

Irkutsk State Medical University

Email: 89500720225@mail.ru

Yu. S. Bukin

Irkutsk State University; Limnological Institute, Siberian Branch of the Russian Academy of Sciences

Email: bukinyura@mail.ru
ORCID iD: 0000-0002-4534-3846

S. V. Erdyneev

Irkutsk State Medical University; Irkutsk Scientific Research Anti-Plague Institute of Siberia and the Far East

Email: orry230@yandex.ru
ORCID iD: 0009-0006-7937-1382

L. A. Stepanenko

Irkutsk State Medical University

Email: steplia@mail.ru
ORCID iD: 0000-0002-5792-7283

D. A. Antipin

Irkutsk State Medical University

Email: mieshamecka@yandex.ru
ORCID iD: 0009-0003-9442-9907

K. B. Kakhiani

Irkutsk State Medical University

Email: kagkkris12@gmail.com
ORCID iD: 0009-0000-7901-7056

A. E. Makarova

Irkutsk State Medical University

Email: eamak18@mail.ru
ORCID iD: 0009-0004-2207-5668

References

  1. Hill K.K., Smith T.J. Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes. In: Rummel A., Binz T. (eds). Botulinum Neurotoxins. Current Topics in Microbiology and Immunology. Berlin: Springer; 2012, vol. 364, р. 1-20. doi: 10.1007/978-3-642-33570-9_1.
  2. Zhang S., Masuyer G., Zhang J., Shen Y., Lundin D., Henriksson L., et al. Identification and characterization of a novel botulinum neurotoxin. Nature Communication. 2017:14130. doi: 10.1038/ncomms14130.
  3. Bowe B.K., Wentz T.G., Gregg B.M., Tepp W.H., Schill K.M., Sharma S., et al. Genomic diversity, competition, and toxin production by group I and II Clostridium botulinum strains used in food challenge studies. Microorganisms. 2022;10(10):1895. doi: 10.3390/microorganisms10101895.
  4. Carter A.T., Peck M.W. Genomes, neurotoxins and biology of Clostridium botulinum group I and group II. Research in Microbiology. 2015;166(4):303-317. doi: 10.1016/j.resmic.2014.10.010.
  5. Brunt J., van Vliet A.H.M., Stringer S.C., Carter A.T., Lindström M., Peck M.W. Pan-genomic analysis of Clostridium botulinum group II (non-proteolytic C. botulinum) associated with foodborne botulism and isolated from the environment. Toxins. 2020;12(5):306. doi: 10.3390/toxins12050306.
  6. Smith T.J., Williamson C.H.D., Hill K.K., Johnson S.L., Xie G., Anniballi F., et al. The distinctive evolution of orfX Clostridium parabotulinum strains and their botulinum neurotoxin type A and F gene clusters is influenced by environmental factors and gene interactions via mobile genetic elements. Frontiers in Microbiology. 2021;12:566908. doi: 10.3389/fmicb.2021.566908.
  7. Nawrocki E.M., Bradshaw M., Johnson E.A. Botulinum neurotoxin-encoding plasmids can be conjugatively transferred to diverse clostridial strains. Scientific Reports. 2018;8:3100. doi: 10.1038/s41598-018-21342-9.
  8. Yang L., Ning Q., Tang S.-S. Recent advances and next breakthrough in immunotherapy for cancer treatment. Journal of Immunology Research. 2022:8052212. doi: 10.1155/2022/8052212.
  9. Alkhnbashi O.S., Meier T., Mitrofanov A., Backofen R., Vob B. CRISPR-Cas bioinformatics. Methods. 2020;172:3-11. doi: 10.1016/j.ymeth.2019.07.013.
  10. Butiuc-Keul A., Farkas A., Carpa R., Iordache D. CRISPR-Cas system: the powerful modulator of accessory genomes in prokaryotes. Microbial Physiology. 2022;32 (1-2):2-17. doi: 10.1159/000516643.
  11. Tang Y., Gao L., Feng W., Guo C., Yang Q., Li F., et al. The CRISPR-Cas toolbox for analytical and diagnostic assay development. Chemical Society Reviews. 2021;50(21):11844-11869. doi: 10.1039/D1CS00098E.
  12. Koonin E.V., Makarova K.S. Origins and evolution of CRISPR-Cas systems. Philosophic Transactions of the Royal Society B. Biological Sciences. 2019;374(1772):20180087. doi: 10.1098/rstb.2018.0087.
  13. Koonin E.V., Makarova K.S. Mobile genetic elements and evolution of crispr-cas systems: all the way there and back. Genome Biology and Evolution. 2017;9(10):2812-2825. doi: 10.1093/gbe/evx192.
  14. Koonin E.V., Makarova K.S., Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology. 2017;37:67-78. doi: 10.1016/j.mib.2017.05.008.
  15. Bhatia S., Pooja, Yadav S.K. CRISPR-Cas for genome editing: Classification, mechanism, designing and applications. International Journal of Biological Macromolecules. 2023;238:124054. doi: 10.1016/j.ijbiomac.2023.124054.
  16. Chen C., Wang Z., Qin Y. CRISPR/Cas9 system: recent applications in immuno-oncology and cancer immunotherapy. Experimental Hematology and Oncology. 2023;12(1):95. doi: 10.1186/s40164-023-00457-4.
  17. Bhokisham N., Laudermilch E., Traeger L.L., Bonilla T.D., Ruiz-Estevez M., Becker J.R. CRISPR-Cas system: the current and emerging translational landscape. Cells. 2023;12(8):1103. doi: 10.3390/cells12081103.
  18. Huang S., Dai R., Zhang Z., Zhang H., Zhang M., Li Z., et al. CRISPR/Cas-based techniques for live-cell imaging and bioanalysis. International Journal of Molecular Sciences. 2023;24(17):13447. doi: 10.3390/ijms241713447.
  19. Van der Oost J., Westra E.R., Jackson R.N., Wiedenheft B. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nature Reviews. Microbiology. 2014;12(7):479-492. doi: 10.1038/nrmicro3279.
  20. Behler J., Hess W.R. Approaches to study CRISPR RNA biogenesis and the key players involved. Methods. 2020;172:12-26. doi: 10.1016/j.ymeth.2019.07.015.
  21. Makarova K.S., Wolf Y.I., Alkhnbashi O.S., Costa F., Shah S.A., Saunders S.J., et al. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology. 2015;13:722-736. doi: 10.1038/nrmicro3569.
  22. Pursey E., Dimitriu T., Paganelli F.L., Westra E.R., van Houte S. CRISPR-Cas is associated with fewer antibiotic resistance genes in bacterial pathogens. Philosophic Transactions of the Royal Society B. Bioяlogical Sciences. 2022;377:20200464. doi: 10.1098/rstb.2020.0464.
  23. Negahdaripour M., Nezafat N., Hajighahramani N., Rahmatabadi S.S., Ghasemi Y. Investigating CRISPR-Cas systems in Clostridium botulinum via bioinformatics tools. Infection, Genetics and Evolution. 2017;54:355-373. doi: 10.1016/j.meegid.2017.06.027.
  24. Wentz T.G., Tremblay B.J.M., Bradshaw M., Doxey A.C., Sharma S.K., Sauer J.-D., et al. Endogenous CRISPR-Cas systems in group I Clostridium botulinum and Clostridium sporogenes do not directly target the botulinum neurotoxin gene cluster. Frontiers in Microbiology. 2022;12:787726. doi: 10.3389/fmicb.2021.787726.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).