Gordonia amicalis G2 strain as a producer of biosurfactants

Cover Page

Cite item

Full Text

Abstract

The present study was aimed at analyzing the ability of a new paraffin-degrading strain, Gordonia amicalis G2, isolated from the contaminated sand of a seaport in Vietnam, to produce biosurfactants. The production of biosurfactants by the Gordonia amicalis G2 strain was monitored during bacterial growth in batch culture with the use of hexadecane as the growth medium. The effectiveness of produced biosurfactants was evaluated in terms of surface and interfacial tension. The surface and interfacial tension of biosurfactant solutions were determined using the du Noüy ring method by means of a Kruss K6 tensiometer. Surface tension decreased to 39 mN/m; interfacial tension, to 2 mN/m. The chemical structure of biosurfactants was characterized using thin-layer chromatography and Fourier transform infrared spectroscopy. A qualitative assessment revealed the glycolipid nature of secondary metabolites. The critical micelle concentration was determined from the inflection point of the curves showing the dependence of surface tension on the biosurfactant content. The critical micelle concentration amounted to 200 mg/L at a constant surface tension of 39 mN/m. The new Gordonia amicalis G2 strain was found to have an effective ability to produce glycolipid biosurfactants. Given the ability of Gordonia amicalis G2 to participate in the synthesis of carotenoids, an integrated technology could be developed for secondary metabolite production by this strain.

About the authors

I. A. Nechaeva

Tula State University

Email: nechaeva1902@gmail.com
ORCID iD: 0000-0003-2736-080X

A. N. Osina

Tula State University

Email: anya.osina2017@yandex.ru
ORCID iD: 0009-0009-2661-1145

A. S. Filippova

Tula State University

Email: stasya.filippova.01@gmail.com
ORCID iD: 0009-0001-6883-1543

N. V.T. Nam

Southern Branch of the Joint Russia-Vietnam Tropical Research and Technology Center

Email: xungcavn@gmail.com
ORCID iD: 0000-0003-0091-5369

L. T. Mo

Southern Branch of the Joint Russia-Vietnam Tropical Research and Technology Center

Email: luongmo@mail.ru
ORCID iD: 0000-0002-6035-5933

References

  1. Kim Y.S., Roh S.G., Kim S.B. Gordonia insulae sp. nov., isolated from an island soil // International Journal of Systematic and Evolutionary Microbiology. 2020. Vol. 70, no. 3. P. 2079–2083. doi: 10.1099/ijsem.0.004023.
  2. Mai Z., Wang L., Li Q., Sun Y., Zhang S. Biodegradation and metabolic pathway of phenanthrene by a newly isolated bacterium Gordonia sp. SCSIO19801 // Biochemical and Biophysical Research Communications. 2021. Vol. 585. P. 42–47. doi: 10.1016/j.bbrc.2021.10.069.
  3. Riesco R., Rose J.J.A., Batinovic S., Petrovski S., Sánchez-Juanes F., Seviour R.J., et al. Gordonia pseudamarae sp. nov., a home for novel actinobacteria isolated from stable foams on activated sludge wastewater treatment plants // International Journal of Systematic and Evolutionary Microbiology. 2022. Vol. 72, no. 10. P. 005547. doi: 10.1099/ijsem.0.005547.
  4. Sowani H., Kulkarni M., Zinjarde S. An insight into the ecology, diversity and adaptations of Gordonia species // Critical Reviews in Microbiology. 2018. Vol. 44, no. 4. P. 393–413. doi: 10.1080/1040841X.2017.1418286.
  5. Kim H.-S., Dong K., Kim J., Lee S.-S. Characteristics of crude oil‐degrading bacteria Gordonia iterans isolated from marine coastal in Taean sediment // MicrobiologyOpen. 2019. Vol. 8, no. 6. P. e00754. doi: 10.1002/mbo3.754.
  6. Silva N.M., de Oliveira A.M.S.A., Pegorin S., Giusti C.E., Ferrari V.B., Barbosa D., et al. Characterization of novel hydrocarbon-degrading Gordonia paraffinivorans and Gordonia sihwensis strains isolated from composting // PLOS One. 2019. Vol. 14, no. 4. P. e0215396. doi: 10.1371/journal.pone.0215396.
  7. Kurniati T.H., Rusmana I., Suryani A., Mubarik N.R. Degradation of polycyclic aromatic hydrocarbon pyrene by biosurfactant-producing bacteria Gordonia cholesterolivorans AMP 10 // Biosaintifika: Journal of Biology and Biology Education. 2016. Vol. 8, no. 3. P. 336–343. doi: 10.15294/biosaintifika.v8i3.6448.
  8. Zhang H., Lin Z., Liu B., Wang G., Weng L., Zhou J., et al. Bioremediation of di-(2-ethylhexyl) phthalate contaminated red soil by Gordonia terrae RL-JC02: characterization, metabolic pathway and kinetics // Science of the Total Environment. 2020. Vol. 733. P. 139138. doi: 10.1016/j.scitotenv.2020.139138.
  9. Kumar V., Bhalla T.C. Transformation of p-hydroxybenzonitrile to p-hydroxybenzoic acid using nitrilase activity of Gordonia terrae // Biocatalysis and Biotransformation. 2013. Vol. 31, no. 1. P. 42–48. doi: 10.3109/10242422.2012.757761.
  10. Guo Y., Huang Y., Pang S., Zhou T., Lin Z., Yu H., et al. Novel mechanism and kinetics of tetramethrin degradation using an indigenous Gordonia cholesterolivorans A16 // International Journal of Molecular Sciences. 2021. Vol. 22, no. 17. P. 9242. doi: 10.3390/ijms22179242.
  11. Nahurira R., Wang J., Yan Y., Jia Y., Fan S., Khokhar I., et al. In silico genome analysis reveals the metabolic versatility and biotechnology potential of a halotorelant phthalic acid esters degrading Gordonia alkanivorans strain YC-RL 2 // AMB Express. 2019. Vol. 9. P. 1–13. doi: 10.1186/s13568-019-0733-5.
  12. Kim K.K., Lee K.C., Klenk H.-P., Oh H.-M., Lee J.-S. Gordonia kroppenstedtii sp. nov., a phenol-degrading actinomycete isolated from a polluted stream // International Journal of Systematic and Evolutionary Microbiology. 2009. Vol. 59, no. 8. P. 1992–1996. doi: 10.1099/ijs.0.005322-0.
  13. Stobdan T., Sinha A., Singh R.P., Adhikari D.K. Degradation of pyridine and 4-methylpyridine by Gordonia terrea IIPN1 // Biodegradation. 2008. Vol. 19. P. 481–487. doi: 10.1007/s10532-007-9152-4.
  14. Drzyzga O., de las Heras L.F., Morales V., Navarro Llorens J.M., Perera J. Cholesterol degradation by Gordonia cholesterolivorans // Applied and Environmental Microbiology. 2011. Vol. 77, no. 14. P. 4802–4810. doi: 10.1128/AEM.05149-11.
  15. Liu N., Maser E., Zhang T. Genomic analysis of Gordonia polyisoprenivorans strain R9, a highly effective 17 beta-estradiol-and steroid-degrading bacterium // Chemico-Biological Interactions. 2021. Vol. 350. P. 109685. doi: 10.1016/j.cbi.2021.109685.
  16. Arenskötter M., Baumeister D., Berekaa M.M., Pötter G., Kroppenstedt R.M., Linos A., et al. Taxonomic characterization of two rubber degrading bacteria belonging to the species Gordonia polyisoprenivorans and analysis of hyper variable regions of 16S rDNA sequences // FEMS Microbiology Letters. 2001. Vol. 205, no. 2. P. 277–282. doi: 10.1111/j.1574-6968.2001.tb10961.x.
  17. Delegan Y., Kocharovskaya Y., Frantsuzova E., Streletskii R., Vetrova A. Characterization and genomic analysis of Gordonia alkanivorans 135, a promising dibenzothiophene-degrading strain // Biotechnology Reports. 2021. Vol. 29. P. e00591. doi: 10.1016/j.btre.2021.e00591.
  18. Ahmad V., Ahmad A., Khan M.I., Baothman O.A.S., Khan M.J. Desulfurization of benzothiophene by an isolated Gordonia sp. IITR100 // Journal of Microbiology, Biotechnology and Food Sciences. 2021. Vol. 10, no. 5. P. e2787. doi: 10.15414/jmbfs.2787.
  19. Ma Y., Xu M., Liu H., Yu T., Guo P., Liu W., et al. Antimicrobial compounds were isolated from the secondary metabolites of Gordonia, a resident of intestinal tract of Periplaneta americana // AMB Express. 2021. Vol. 11. P. 1–11. doi: 10.1186/s13568-021-01272-y.
  20. Sánchez-Suárez J., Diaz L., Coy-Barrera E. Villamil L. Specialized metabolism of Gordonia genus: an integrated survey on chemodiversity combined with a comparative genomics-based analysis // BioTech. 2022. Vol. 11, no. 4. P. 53. doi: 10.3390/biotech11040053.
  21. Schwabe R., Senges C.H.R., Bandow J.E., Heine T., Lehmann H., Wiche O., et al. Cultivation dependent formation of siderophores by Gordonia rubripertincta CWB2 // Microbiological Research. 2020. Vol. 238. P. 126481. doi: 10.1016/j.micres.2020.126481.
  22. Schneider K., Graf E., Irran E., Nicholson G., Stainsby F.M., Goodfellow M., et al. Bendigoles A~C, new steroids from Gordonia australis Acta 2299 // The Journal of Antibiotics. 2008. Vol. 61, no. 6. P. 356–364. doi: 10.1038/ja.2008.50.
  23. Wang J., He M., Zeng H., Liu W., Luo X., Ma Y., et al. A cytotoxic triterpenoid from a Periplaneta americana-derived, Gordonia hongkongensis WA12-1-1 // FEMS Microbiology Letters. 2022. Vol. 369, no. 1. P. fnac121. doi: 10.1093/femsle/fnac121.
  24. Loh W.L.C., Huang K.-C., Ng H.S., Lan J.C.-W. Exploring the fermentation characteristics of a newly isolated marine bacteria strain, Gordonia terrae TWRH01 for carotenoids production // Journal of Bioscience and Bioengineering. 2020. Vol. 130, no. 2. P. 187–194. doi: 10.1016/j.jbiosc.2020.03.007.
  25. Liu W., Xing X., Dong Q., Liu X., Li W. Isolation and identification of the alga-symbiotic bacterium Gordonia and characterization of its exopolysaccharide // Natural Product Research. 2024. Vol. 38, no. 3. P. 523–529. doi: 10.1080/14786419.2022.2123477.
  26. Zargar A.N., Mishra S., Kumar M., Srivastava P. Isolation and chemical characterization of the biosurfactant produced by Gordonia sp. IITR100 // PLOS One. 2022. Vol. 17, no. 4. P. e0264202. doi: 10.1371/journal.pone.0264202.
  27. Абащева М.А., Хоравиди Е.Х., Акатова Е.В., Нечаева И.А., Бабкина Е.Е., Понаморева О.Н. Влияние физико-химических факторов окружающей среды на поверхностные свойства продуцируемых штаммом Rhodococcus erythropolis X5 биосурфактантов // Известия Тульского государственного университета. Естественные науки. 2023. N 4. С. 28–37. doi: 10.24412/2071-6176-2023-4-28-37. EDN: AFLLDA.
  28. Soberón-Chávez G., Maier R.M. Biosurfactants: a general overview // Biosurfactants: from genes to applications / ed. G. Soberón-Chávez. Berlin: Springer-Verlag, 2011. P. 1–11. doi: 10.1007/978-3-642-14490-5_1.
  29. Пат. № 2673747, Российская Федерация, МПК C12N 1/20, C09K 8/582, C12R 1/01. Штамм Gordonia amicalis, способный к генерации непосредственно в нефтяном пласте нефтевытесняющего агента – биоПАВ и снижающий содержание сероорганических соединений нефти / И.А. Борзенков, Д.Ш. Соколова, Т.Н. Назина, Т.Л. Бабич, Е.М. Семенова, А.П. Ершов. Заявл. 29.11.2018; опубл. 29.11.2018. Бюл. № 34.
  30. Hao D.-H. Lin J.-Q., Song X., Lin. J.-Q., Su Y.-J., Qu Y.-B. Isolation, identification, and performance studies of a novel paraffin-degrading bacterium of Gordonia amicalis LH3 // Biotechnology and Bioprocess Engineering. 2008. Vol. 13, no. 1. P. 61–68. doi: 10.1007/s12257-007-0168-8.
  31. Datta D., Ghosh S., Kumar S., Gangola S., Majumdar B., Saha R., Mazumdar S.P., et al. Microbial biosurfactants: multifarious applications in sustainable agriculture // Microbiological Research. 2024. Vol. 279. P. 127551. doi: 10.1016/j.micres.2023.127551.
  32. Karnwal A., Shrivastava S., Al-Tawaha A.R.M.S., Kumar G., Singh R., Kumar A., et al. Microbial biosurfactant as an alternate to chemical surfactants for application in cosmetics industries in personal and skin care products: a critical review // BioMed Research International. 2023. P. 2375223. doi: 10.1155/2023/2375223.
  33. Ceresa C., Fracchia L., Sansotera A.C., de Rienzo M.A.D., Banat I.M. Harnessing the potential of biosurfactants for biomedical and pharmaceutical applications // Pharmaceutics. 2023. Vol. 15, no. 8. P. 2156. doi: 10.3390/pharmaceutics15082156.
  34. Roy A., Khan M.R., Mukherjee A.K. Recent advances in the application of microbial biosurfactants in food industries: opportunities and challenges // Food Control. 2024. Vol. 163. P. 110465. doi: 10.1016/j.foodcont.2024.110465.
  35. Shaikhah D., Loise V., Angelico R., Porto M., Calandra P., Abe A.A., et al. New trends in biosurfactants: from renewable origin to green enhanced oil recovery applications // Molecules. 2024. Vol. 29, no. 2. P. 301. doi: 10.3390/molecules29020301.
  36. Miao Y., To M.H., Siddiqui M.A., Wang H., Lodens S., Chopra S.S., et al. Sustainable biosurfactant production from secondary feedstock – recent advances, process optimization and perspectives // Frontiers in Chemistry. 2024. Vol. 12. P. 1327113. doi: 10.3389/fchem.2024.1327113.
  37. Лыонг Т.М., Нечаева И.А, Петриков К.В., Филонов А.Е., Понаморева О.Н. Структура и физико-химические свойства гликолипидных биосурфактантов, продуцируемых бактериями-нефтедеструкторами Rhodococcus sp. X5 // Известия вузов. Прикладная химия и биотехнология. 2017. Т. 7. N 2. С. 72–79. doi: 10.21285/2227-2925-2017-7-2-72-79. EDN: YTPLSH.
  38. Ehiosun K.I., Godin S., Urios L., Lobinski R., Grimaud R. Degradation of long-chain alkanes through biofilm formation by bacteria isolated from oil-polluted soil // International Biodeterioration & Biodegradation. 2022. Vol. 175. P. 105508. doi: 10.1016/j.ibiod.2022.105508.
  39. Ivanova A.E., Borzenkov I.A., Sokolova D.Sh. Catabolic potential and surfactant activity of halotolerant hydrocarbon-oxidizing bacteria // Microbiology. 2021. Vol. 90. P. 405–415. doi: 10.1134/S0026261721040056.
  40. Liu Y., Wu J., Liu Y., Wu X. Biological process of alkane degradation by Gordonia sihwaniensis // ACS Omega. 2021. Vol. 7, no. 1. P. 55–63. doi: 10.1021/acsomega.1c01708.
  41. Stainsby F.M., Hodar J., Vaughan H. Biosurfactant production by mycolic acid-containing Actinobacteria // Actinobacteria – diversity, applications and medical aspects / ed. W.N. Hozzein. 2022. P. 1835–2131. doi: 10.5772/intechopen.104576.
  42. Kumar R., Das A.J. Extraction, detection, and characterization of rhamnolipid biosurfactants from microorganisms // Rhamnolipid biosurfactant: recent trends in production and application / eds R. Kumar, A.J. Das. Singapore: Springer, 2018. P. 15–28. doi: 10.1007/978-981-13-1289-2_2.
  43. Pardhi D.S., Panchal R.R., Raval V.H., Joshi R.G., Poczai P., Almalki W.H., et al. Microbial surfactants: a journey from fundamentals to recent advances // Frontiers in Microbiology. 2022. Vol. 13. P. 982603. doi: 10.3389/fmicb.2022.982603.
  44. Elshikh M., Moya-Ramírez I., Moens H., Roelants S., Soetaert W., Marchant R., et al. Rhamnolipids and lactonicsophorolipids: natural antimicrobial surfactants for oral hygiene // Journal of Applied Microbiology. 2017. Vol. 123, no. 5. P. 1111–1123. doi: 10.1111/jam.13550.
  45. Sowani H., Deshpande A., Gupta V., Kulkarni M., Zinjarde S. Biodegradation of squalene and n-hexadecane by Gordonia amicalis HS-11 with concomitant formation of biosurfactant and carotenoid // International Biodeterioration & Biodegradation. 2019. Vol. 142. P. 172–181. doi: 10.1016/j.ibiod.2019.05.005.
  46. Kuyukina M.S., Ivshina I.B., Philp J.C., Christofi N., Dunban S.A., Ritchkova M.I. Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction // Journal of Microbiological Methods. 2001. Vol. 46, no. 2. P. 149–156. doi: 10.1016/S0167-7012(01)00259-7.
  47. Laorrattanasak S., Rongsayamanont W., Khondee N., Paorach N., Soonglerdsongpha S., Pinyakong O., et al. Production and application of Gordonia westfalica GY40 biosurfactant for remediation of fuel oil spill // Water, Air, and Soil Pollution. 2016. Vol. 227, no. 9. P. 325. doi: 10.1007/s11270-016-3031-8.
  48. Delegan Y., Sargsyan A., Hovhannisyan N., Babayan B., Petrikov K., Vainstein M. Analysis of genome sequence and trehalose lipid production peculiarities of the thermotoerant Gordonia strain // Journal of Basic Microbiology. 2020. Vol. 60, no. 1. P. 14–21. doi: 10.1002/jobm.201900439.
  49. Janek T., Rodrigues L.R., Gudiña E.J., Czyżnikowska Z. Structure and mode of action of cyclic lipopeptide pseudofactin II with divalent metal ions // Colloids and Surfaces B: Biointerfaces. 2016. Vol. 146. P. 498–506. doi: 10.1016/j.colsurfb.2016.06.055.
  50. Garton N.J., Sutcliffe I.C. Identification of a lipoarabinomannan-like lipoglycan in the actinomycete Gordonia bronchialis // Archives of Microbiology. 2006. Vol. 184, no. 6. P. 425–427. doi: 10.1007/s00203-005-0050-z.
  51. Silva T.P., Paixão S.M., Tavares J., Gil C.V., Torres C.A.V., Freitas F., et al. A new biosurfactant/bioemulsifier from Gordonia alkanivorans strain 1B: production and characterization // Processes. 2022. Vol. 10, no. 5. P. 845. doi: 10.3390/pr10050845.
  52. Franzetti A., Caredda P., La Colla P., Pintus M., Tamburini E., Papacchini M., et al. Cultural factors affecting biosurfactant production by Gordonia sp. BS29 // International Biodeterioration & Biodegradation. 2009. Vol. 63, no. 7. P. 943–947. doi: 10.1016/j.ibiod.2009.06.001.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).