Clarification dynamics of fresh apple must obtained from different apple cultivars grown in the south of Russia

Cover Page

Cite item

Full Text

Abstract

Studies on the clarification and compact settling dynamics of apple must provide cider makers with insight into the possibility of using processing aids to achieve must clarification, as well as a better understanding of their usage levels and schemes. The present article analyzes the clarification dynamics of fresh apple must produced from the following cultivars: Margo, Dzhin, Orfey, Karmen, Ekzotika, Liberty, Persikovoe, Amulet, Zolotoe Letnee, and Ketni. In the study, the must clarification was carried out spontaneously (natural settling) and with the use of enzyme preparations, SQzyme PCL and Fructozym P. Must turbidity was determined using a LabScat 2 turbidity meter. The spontaneous clarification of fresh apple must was found to proceed slowly. The use of enzyme preparations significantly enhanced the clarification process. Within 8–16 h of adding SQzyme PCL, a 5–8% decrease was observed in the turbidity of apple must obtained from the cultivars Margo, Dzhin, Orfey, Ekzotika, and Liberty as compared to the spontaneous clarification of must obtained from the same cultivars. The efficacy of Fructozym P. was slightly lower. The compact settling dynamics of must are shown to depend significantly on the varietal characteristics of apple must and clarification duration. The compact settling velocity was calculated. The highest rate was noted in the must obtained from the cultivars Margo, Ekzotika, and Orfey, while the lowest rate was noted in the must produced from the Persikovoe cultivar. The use of SQzyme PCL increased the compact settling velocity by 1.5–4.0 times. The largest increase in the compact settling velocity was observed in the must obtained from Persikovoe and Karmen cultivars.

About the authors

N. M. Ageyeva

North Caucasian Federal Scientific Centre of Horticulture, Viticulture, Wine-making

Email: ageyeva@inbox.ru
ORCID iD: 0000-0002-9165-6763

A. A. Shirshova

North Caucasian Federal Scientific Centre of Horticulture, Viticulture, Wine-making

Email: anastasiya_1987@inbox.ru
ORCID iD: 0000-0003-1428-5935

A. A. Khrapov

North Caucasian Federal Scientific Centre of Horticulture, Viticulture, Wine-making

Email: hrapov-anton@bk.ru
ORCID iD: 0000-0001-6436-1970

References

  1. Tarko T., Januszek M., Duda-Chodak A., Sroka P. How keeving determines oenological parameters and concentration of volatile compounds in ciders? // Journal of Food Composition and Analysis. 2021. Vol. 100. P. 103897. doi: 10.1016/j.jfca.2021.103897.
  2. Zhong W., Yuan W., Wang J., Wu Z., Du H., Huang X., et al. Antioxidant and preservation effects of tea polyphenols on apple juice // Food Bioscience. 2024. Vol. 60. P. 104288. doi: 10.1016/j.fbio.2024.104288.
  3. Ташланов Н.Ю., Сайдалиев И.Н. Осветление плодово-ягодных соков обработкой ультразвуком // Вестник Курганского государственного университета. Серия: Естественные науки. 2015. N 1. C. 70–72. EDN: TXHTLF.
  4. Агеева Н.М., Ширшова А.А., Ульяновская Е.В., Храпов А.А., Чернуцкая Е.А. Исследование процесса осветления яблочного сусла с применением различных вспомогательных средств // Плодоводство и виноградарство Юга России. 2024. N 2. С. 204–218. doi: 10.30679/2219-5335-2024-2-86-204-218. EDN: MLJZXD.
  5. Гнетько Л.В., Неровных Л.П., Удычак М.М., Сиюхова Б.Б., Коблева М.М. Влияние ферментативного катализа на технологические параметры производства яблочных соков // Новые технологии. 2021. Т. 17. N 4. С. 33–41. doi: 10.47370/2072-0920-2021-17-4-33-41. EDN: WWPDYH.
  6. Ozyilmaz G., Gunay E. Clarification of apple, grape and pear juices by co-immobilized amylase, pectinase and cellulase // Food Chemistry. 2023. Vol. 398. P. 133900. doi: 10.1016/j.foodchem.2022.133900.
  7. Zhu D., Zhang Y., Kou C. Ultrasonic and other sterilization methods on nutrition and flavor of cloudy apple juice // Ultrasonics Sonochemistry. 2022. Vol. 84. P. 105975. doi: 10.1016/j.ultsonch.2022.105975.
  8. Bhattacharya R., Arora S., Ghosh S. Bioprocess optimization for food-grade cellulolytic enzyme production from sorghum waste in a novel solid-state fermentation bioreactor for enhanced apple juice clarification // Journal of Environmental Management. 2024. Vol. 358. P. 120781. doi: 10.1016/j.jenvman.2024.120781.
  9. Kharazmi S., Taheri-Kafrani A., Soozanipour A., Nasrollahzadeh M., Varma R.S. Xylanase immobilization onto trichlorotriazine-functionalized polyethylene glycol grafted magnetic nanoparticles: a thermostable and robust nanobiocatalyst for fruit juice clarification // International Journal of Biological Macromolecules. 2020. Vol. 163. P. 402–413. doi: 10.1016/j.ijbiomac.2020.06.273.
  10. Ladeira Ázar R.I.S., da Luz Morales M., Maitan-Alfenas G.P., Falkoski D.L., Alfenas R.F., Guimarães V.M. Apple juice clarification by a purified polygalacturonase from Calonectria pteridis // Food and Bioproducts Processing. 2020. Vol. 119. P. 238–245. doi: 10.1016/j.fbp.2019.11.013.
  11. Агеева Н.М., Ульяновская Е.В., Храпов А.А., Тихонова А.Н., Чернуцкая Е.А. Физико-химические показатели яблок как сырья для производства сидров // Плодоводство и виноградарство Юга России. 2023. N 2. С. 211–225. doi: 10.30679/2219-5335-2023-2-80-211-225. EDN: ZKCLCU.
  12. Программа и методика сортоизучения плодовых, ягодных и орехоплодных культур / ред. Е.Н. Седов, Т.П. Огольцова. Орел: Изд-во ВНИИСПК, 1999. 608 с. EDN: YHAOZT.
  13. Zhu D., Kou C., Shen Y., Xi P., Cao X., Liu H., et al. Effects of different processing steps on the flavor and colloidal properties of cloudy apple juice // Journal of the Science of Food and Agriculture. 2021. Vol. 101, no. 9. P. 3819–3826. doi: 10.1002/jsfa.11016.
  14. Zhu D., Shen Y., Wei L., Xu L., Cao X., Liu H., et al. Effect of particle size on the stability and flavor of cloudy apple juice // Food Chemistry. 2020. Vol. 328. P. 126967. doi: 10.1016/j.foodchem.2020.126967.
  15. Padma P.N., Sravani P., Mishra P., Narayan S., Kappagantula A. Synergistic effect of multiple enzymes on apple juice clarification // Indian Journal of Science and Technology. 2017. Vol. 10, no. 10. P. 1–5. doi: 10.17485/ijst/2017/v10i10/107716.
  16. Antón-Díaz M.J., Suárez Valles B., Mangas-Alonso J.J., Fernández-García O., Picinelli-Lobo A. Impact of different techniques involving contact with lees on the volatile composition of cider // Food Chemistry. 2016. Vol. 190. P. 1116–1122. doi: 10.1016/j.foodchem.2015.06.018.
  17. Sharma H.P., Patel H., Sugandha. Enzymatic added extraction and clarification of fruit juices – а review // Critical Reviews in Food Science and Nutrition. 2017. Vol. 57, no. 6. P. 1215–1227. doi: 10.1080/10408398.2014.977434.
  18. Агеева Н.М., Ширшова А.А., Ульяновская Е.В., Храпов А.А., Чернуцкая Е.А. Исследование процесса осветления яблочного сусла в зависимости от сортов яблони // Плодоводство и виноградарство Юга России. 2023. N 5. С. 176–187. doi: 10.30679/2219-5335-2023-5-83-176-187. EDN: TNSUAO.
  19. Лычников Д.С., Елизаров Л.Г. Метод определения коллоидно-дисперсного состава жидких пищевых продуктов. М.: Изд-во ЦНИИТЭИ Пищепром, 1983. N 3. 32 с.
  20. Mihalev K.R., Dinkova V., Shikov P., Mollov P. Classification of fruit juices // Fruit juices. Extraction, composition, quality and analysis / eds G. Rajauria, B.K. Tiwari. Academic Press, 2018. P. 33–44. doi: 10.1016/B978-0-12-802230-6.00003-5.
  21. Бутова С.Н., Вольнова Е.Р., Николаева Ю.В., Едличкова Я. Усовершенствование технологии плодово-ягодных соков с использованием пектолитических ферментнов // Health, Food & Biotechnology. 2020. Т. 2. N 1. С. 128–139. doi: 10.36107/hfb.2020.i1.s296. EDN: DUMBEA.
  22. Scutara u E.-C., Luchian C.E., Vlase L., Colibaba L.C., Gheldiu A.M., Cotea V.V. Evolution of phenolic profile of white wines treated with enzymes // Food Chemistry. 2021. Vol. 340. P. 127910. doi: 10.1016/j.foodchem.2020.127910.
  23. Lhamo S., Tobgay S., Maya D., Deki S. Study on clarification of apple juice using enzymes // Bhutanese Journal of Agriculture. 2022. Vol. 5, no. 1. P. 183–195. doi: 10.55925/btagr.22.5115.
  24. Enzymes in food technology. Improvements and innovations / ed. M. Kuddus. Singapore: Springer, 2018. 419 р. doi: 10.1007/978-981-13-1933-4.
  25. Li Q., Qin C., Chen X., Hu K., Li J., Liu A., et al. Enhancing the acid stability of the recombinant GH11 xylanase xynA through N-terminal substitution to facilitate its application in apple juice clarification // International Journal of Biological Macromolecules. 2024. Vol. 268. Pt. 1. P. 131857. doi: 10.1016/j.ijbiomac.2024.131857.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).