Thermal esterification of soybean husk polysaccharides with citric acid
- Authors: Evstaf’ev S.N.1, Fomina E.S.1, Tiguntceva N.P.1
-
Affiliations:
- Irkutsk National Research Technical University
- Issue: Vol 15, No 2 (2025)
- Pages: 188-195
- Section: Physico-chemical biology
- URL: https://ogarev-online.ru/2227-2925/article/view/366119
- DOI: https://doi.org/10.21285/achb.970
- EDN: https://elibrary.ru/WYMTGP
- ID: 366119
Cite item
Full Text
Abstract
Keywords
About the authors
S. N. Evstaf’ev
Irkutsk National Research Technical University
Email: esn@istu.edu
ORCID iD: 0000-0002-3681-9478
E. S. Fomina
Irkutsk National Research Technical University
Email: lenafomina1982@yandex.ru
ORCID iD: 0000-0002-0307-3382
N. P. Tiguntceva
Irkutsk National Research Technical University
Email: tignadezhda@yandex.ru
ORCID iD: 0000-0001-5348-5345
References
- Yao G., Hertel T.W., Taheripour F. Understanding China’s soybean boom from historical validation // Agricultural and Applied Economics Association (AAEA) Conferences: 2017 Annual Meeting (Chicago, 30 July – 1 August 2017). Chicago, 2017. 27 p. doi: 10.22004/ag.econ.258373.
- Smith W.B., Coffey K.P., Tucker J.D., Hubbell D.S., Kegley E.B., Philipp D., et al. Using soybean hulls to meet dietary energy requirements of gestating cows having restricted access to poor-quality hay // The Professional Animal Scientist. 2017. Vol. 33, no. 1. P. 101–107. doi: 10.15232/pas.2016-01553.
- Bittencourt G.A., de Souza Vandenberghe L.P., Valladares-Diestra K., Herrmann L.W., de Mello A.F.M., Vásquez Z.S., et al. Soybean hulls as carbohydrate feedstock for medium to high-value biomolecule production in biorefineries: a review // Bioresource Technology. 2021. Vol. 339. P. 125594. doi: 10.1016/j.biortech.2021.125594.
- Barros P.J.R., Ascheri D.P.R., Santos M.L.S., Morais C.C., Ascheri J.L.R., Signini R., et al. Soybean hulls: optimization of the pulping and bleaching processes and carboxymethyl cellulose synthesis // International Journal of Biological Macromolecules. 2020. Vol. 144. P. 208–218. doi: 10.1016/j.ijbiomac.2019.12.074.
- Yoo J., Alavi S., Vadlani P., Amanor-Boadu V. Thermo-mechanical extrusionpretreatment for conversion of soybean hulls to fermentable sugars // Bioresource Technology. 2011. Vol. 102. P. 7583–7590. doi: 10.1016/j.biortech.2011.04.092.
- Ferrer A., Salas C., Rojas O.J. Physical, thermal, chemical and rheological characterization of cellulosic microfibrils and microparticles produced from soybean hulls // Industrial Crops and Products. 2016. Vol. 84. P. 337–343. doi: 10.1016/j.indcrop.2016.02.014.
- Bortolatto R., Bittencourt P.R.S., Yamashita F. Biodegradable starch / polyvinyl alcohol composites produced by thermoplastic injection containing cellulose extracted from soybean hulls (Glycine max L.) // Industrial Crops & Products. 2022. Vol. 176. P. 114383. doi: 10.1016/j.indcrop.2021.114383.
- Merci A., Marim R.G., Urbano A., Mali S. Films based on cassava starch reinforced with soybean hulls or microcrystalline cellulose from soybean hulls // Food Packaging and Shelf Life. 2019. Vol. 20. P. 100321. doi: 10.1016/j.fpsl.2019.100321.
- Gebresas G.A., Szabó T., Marossy K. A comparative study of carboxylic acids on the cross-linking potential of corn starch films // Journal of Molecular Structure. 2023. Vol. 1277. P. 134886. doi: 10.1016/j.molstruc.2022.134886.
- Ray R., Das S.N., Das A. Mechanical, thermal, moisture absorption and biodegradation behaviour of date palm leaf reinforced PVA/starch hybrid composites // Materials Today: Proceedings. 2021. Vol. 41, pt. 2. P. 376–381. doi: 10.1016/j.matpr.2020.09.564.
- Alavarse A.C., Frachini E.C.G., da Silva R.L.C.G., Lima V.H., Shavandi A., Petri D.F.S. Crosslinkers for polysaccharides and proteins: synthesis conditions, mechanisms, and crosslinking efficiency, a review // International Journal of Biological Macromolecules. 2022. Vol. 202. P. 558–596. doi: 10.1016/j.ijbiomac.2022.01.029.
- Reddy N., Yang Y. Citric acid cross-linking of starch films // Food Chemistry. 2010. Vol. 118, no. 3. P. 702–711. doi: 10.1016/j.foodchem.2009.05.050.
- Zoldners J., Kiseleva T. Modification of hemicelluloses with polycarboxylic acids // Holzforschung. 2013. Vol. 67, no. 5. P. 567–571. doi: 10.1515/hf-2012-0183.
- Li D., Henschen J., Ek M. Esterification and hydrolysis of cellulose using oxalic acid dihydrate in a solvent-free reaction suitable for preparation of surface-functionalised cellulose nanocrystals with high yield // Green Chemistry. 2017. Vol. 19, no. 23. P. 5564–5567. doi: 10.1039/C7GC02489D.
- Shao H., Sun H., Yang B., Zhang H., Hu Y. Facile and green preparation of hemicellulose-based film with elevated hydrophobicity via cross-linking with citric acid // RSC Advances. 2019. Vol. 9, no. 5. P. 2395–2401. doi: 10.1039/C8RA09937E.
- Cui X., Honda T., Asoh T.-A., Uyama H. Cellulose modified by citric acid reinforced polypropylene resin as fillers // Carbohydrate Polymers. 2020. Vol. 230. P. 115662. doi: 10.1016/j.carbpol.2019.115662.
- Feldman D. Cellulose nanocomposites // Journal of Macromolecular Science, Part A: Pure and Applied Chemistry. 2015. Vol. 52, no. 4. P. 322–329. doi: 10.1080/10601325.2015.1007279.
- Otal E.H., Kim M.L., Hinestroza J.P., Kimura M. A solid-state pathway towards the tunable carboxylation of cellulosic fabrics: controlling the surface’s acidity // Membranes. 2021. Vol. 11, no. 7. P. 514. doi: 10.3390/membranes11070514.
- Ахматгалиева К.И., Амракулова А.А., Тигунцева Н.П., Евстафьев С.Н. Экстрактивные вещества соевой шелухи // Актуальные проблемы химии, биотехнологии и сферы услуг: материалы VIII Всерос. науч.-практ. конф. с междунар. уч. (г. Иркутск, 25–26 апреля 2024 г.). Иркутск: Изд-во ИРНИТУ, 2024. С. 58–62. EDN: OXNRNG.
- Romeo I., Olivito F., Tursi A., Algieri V., Beneduci A., Chidichimo G., et al. Totally green cellulose conversion into bio-oil and cellulose citrate using molten citric acid in an open system: synthesis, characterization and computational investigation of reaction mechanisms // RSC Advances. 2020. Vol. 10, no. 57. P. 34738–34751. doi: 10.1039/d0ra06542k.
Supplementary files


