Synthesis of three-dimensional matrices based on collagen–pectin–polyacrylate grafted copolymers using the RbTe1.5W0.5O6 photocatalyst

Cover Page

Cite item

Full Text

Abstract

The development of new promising materials of three-dimensional structure from available bioresorbable, biointegrable and biocompatible polymers is in demand and relevant in connection with the intensive development of regenerative medicine. In this work, hydrogels of the grafted copolymers of methyl methacrylate/butyl acrylate onto a mixture of collagen and pectin were obtained during photocatalysis in the presence of a complex oxide RbTe1.5W0.5O6. The characteristics of the synthesis products were obtained by gel penetrating chromatography, elemental analysis, electron microscopy, and biological biocidality tests. The collagen content in an amount of less than 40%, the microstructure of the polymer in the form of a fine-mesh, and the biocidity of the sample films were established. The polymer product was identified on the catalyst surface after the separation of the oxide powder from the aqueous dispersion. The main advantage of such materials is the unique combination of properties of their components assembled into a specific structure. The advantages of the obtained material include, among other things, the environmental advantage of the initial components - natural renewable raw materials: collagen was isolated from cod processing waste, pectin from fruit and vegetable processing waste.

About the authors

L. L. Semenycheva

Lobachevsky State University of Nizhny Novgorod

Author for correspondence.
Email: llsem@yandex.ru

V. V. Prodaevich

Lobachevsky State University of Nizhny Novgorod

Email: prodaevitchnika@yandex.ru

V. O. Rumyantseva

Lobachevsky State University of Nizhny Novgorod

Email: tchasowa.vika@yandex.ru

D. G. Fukina

Lobachevsky State University of Nizhny Novgorod

Email: dianafuk@yandex.ru

A. V. Koryagin

Lobachevsky State University of Nizhny Novgorod

Email: kor-andrey14@yandex.ru

N. B. Valetova

Lobachevsky State University of Nizhny Novgorod

Email: nata-bor-2005@mail.ru

O. N. Smirnova

Lobachevsky State University of Nizhny Novgorod

Email: biodeg@mail.ru

E. V. Suleimanov

Lobachevsky State University of Nizhny Novgorod

Email: suev@unn.ru

References

  1. Рыскина Е.А., Гильмиярова Ф.Н., Колотьева Н.А., Потехина В.И., Горбачева И.В. Биомолекулы и взаимодействия между ними // Международный журнал прикладных и фундаментальных исследований. 2017. N 6-1. С. 97–101. EDN: YOSLBB.
  2. Mortier C., Costa D.C.S., Oliveira M.B., Haugen H.J., Lyngstadaas S.P., Blaker J.J., et al. Advanced hydrogels based on natural macromolecules: chemical routes to achieve mechanical versatility // Materials Today Chemistry. 2022. Vol. 26. P. 101222. doi: 10.1016/j.mtchem.2022.101222.
  3. Viateau V., Zhou J., Guérard S., Manassero M., Thourot M., Anagnostou F., et al. Ligart: ligament synthétique “bioactif” et “biointégrable” permettant la réhabilitation rapide du patient: greffage chimique, évaluations biologiques in vivo, expérimentation animale, étude préclinique // Innovation and Research in BioMedical engineering. 2011. Vol. 32, no. 2. P. 118–122. doi: 10.1016/j.irbm.2011.01.007.
  4. Vikingsson L., Antolinos-Tupin C.M., Gómez-Tejedor J.A., Gallego Ferrer G., Gómez Ribelles J.L. Prediction of the “in vivo” mechanical behavior of biointegrable acrylic macroporous scaffolds // Materials Science and Engineering: С. 2016. Vol. 61. P. 651–658. doi: 10.1016/j.msec.2015.12.068.
  5. Adamiak K., Sionkowska A. Current methods of collagen cross-linking: review // International Journal of Biological Macromolecules. 2020. Vol. 161. P. 550–560. doi: 10.1016/j.ijbiomac.2020.06.075.
  6. Нащекина Ю.А., Луконина О.А., Дарвиш Д.М., Нащекин А.В., Елоховский В.Ю., Юдин В.Е.. Биологические и реологические свойства коллагена, сшитого глутаровым альдегидом // Журнал технической физики. 2020. Т. 90. N 9. С. 1601–1606. doi: 10.21883/JTF.2020.09.49697.33-20. EDN: SLVQCW.
  7. Щеблыкина А.В., Мищенко П.В., Кумейко В.В. Биосовместимые деградируемые материалы на основе пектинов для тканевой инженерии: местная реакция тканей при подкожной имплантации // Тихоокеанский медицинский журнал. 2013. N 2. С. 13–17. EDN: QZWEFH.
  8. Jayakumara G.C., Usharani N., Kawakami J., Rao J.R., Nair B.U. Studies on the physico-chemical characteristics of collagen – pectin composites // RSC Advances. 2014. Vol. 4, no. 109. P. 63840–63849. doi: 10.1039/c4ra10368h.
  9. Pat. no. 115724924A, China. Recombinant collagen capable of self-assembling into gel and preparation method and application thereof / S. Yue, M. Ruhua, N. Rui, G. Cungang. Application 25.08.2021; publication 03.03.2023.
  10. Yan M., An X., Duan S., Jiang Z., Liu X., Zhao X., et al. A comparative study on cross-linking of fibrillar gel prepared by tilapia collagen and hyaluronic acid with EDC/NHS and genipin // International Journal of Biological Macromolecules. 2022. Vol. 213. P. 639–650. doi: 10.1016/j.ijbiomac.2022.06.006.
  11. Pat. no. 116603104A, China. Preparation method and application of recombinant type III collagen-sodium hyaluronate double-crosslinked gel / C. Liang, L. Jianyong, C. Xiaochao. Application 09.06.2023; publication 18.08.2023.
  12. Xie C., Schaefer L., Iozzo R.V. Global impact of proteoglycan science on human diseases // iScience. 2023. Vol. 26, no. 11. P. 108095. doi: 10.1016/j.isci.2023.108095.
  13. Zhang M., Ou X., Shi H., Huang W., Song L., Zhu J., et al. Isolation, structures and biological activities of medicinal glycoproteins from natural resources: a review // International Journal of Biological Macromolecules. 2023. Vol. 244. P. 125406. doi: 10.1016/j.ijbiomac.2023.125406.
  14. Zhang Ch., Zhou Z., Fu S., Yu C., Irfan M., Su X. DNA nanoprobes for detection and imaging of glycoproteins // Nano Today. 2023. Vol. 51. P. 101893. doi: 10.1016/j.nantod.2023.101893.
  15. Deng Y., Ma L., Han Q., Yu C., Johnson-Buck A., Su X. DNA-templated timer probes for multiplexed sensing // Nano Letters. 2020. Vol. 20, no. 4. P. 2688–2694. doi: 10.1021/acs.nanolett.0c00313.
  16. Semenycheva L., Chasova V., Fukina D., Suleymanov E. Synthesis of polymethyl-methacrylate–collagen-graft copolymer using a complex oxide RbTe1.5W0.5O6 photocatalyst // Polymer Science, Series D. 2022. Vol. 15. P. 110–117. doi: 10.1134/S1995421222010166.
  17. Chasova V., Semenycheva M., Egorkhina M., Charykova I., Linkova D., Rubtsova Y., et al. Cod gelatin as an alternative to cod collagen in hybrid materials for regenerative medicine // Macromolecular Research. 2022. Vol. 30. P. 212–221. doi: 10.1007/s13233-022-0017-9.
  18. Chasova V.O., Fukina D.G., Boryakov A.V., Koroleva E.V., Semenycheva L.L., Suleymanov E.V. The effect of methyl methacrylate transformations during photocatalysis in the presence of RbTe1.5W0.5O6 on the change of the complex oxide surface // Известия вузов. Прикладная химия и биотехнология. 2022. Т. 12. N 2. С. 208–221. doi: 10.21285/2227-2925-2022-12-2-208-221. EDN: STAHGQ.
  19. Semenycheva L., Chasova V., Fukina D., Koryagin A., Belousov A., Valetova N., et al. Photocatalytic synthesis of materials for regenerative medicine using complex oxides with β-pyrochlore structure // Life. 2023. Vol. 13, no. 2. P. 352. doi: 10.3390/life13020352.
  20. Semenycheva L., Chasova V., Sukhareva A., Fukina D., Koryagin A., Valetova N., et al. New composite materials with cross-linked structures based on grafted copolymers of acrylates on cod collagen // Applied Sciences. 2023. Vol. 13, no. 9. P. 5455. doi: 10.3390/app13095455.
  21. Semenycheva L., Chasova V., Matkivskaya J., Fukina D., Koryagin A., Belaya T., et al. Features of polymerization of methyl methacrylate using a photocatalyst – the complex oxide RbTe1.5W0.5O6 // Journal of Inorganic and Organometallic Polymers and Materials. 2021. Vol. 31. P. 3572–3583. doi: 10.1007/s10904-021-02054-6.
  22. Walling C. Free radicals in solution. New York: Wiley, 1957. 631 p.
  23. Halliwell B., Gutteridge J.M.C. Free radicals in biology and medicine. Oxford: Oxford University Press, 1999. 936 p.
  24. Розанцев Э.Г., Шолле В.Д. Органическая химия свободных радикалов: монография. М.: Химия, 1979. 344 с.
  25. Fukina D.G., Koryagin A.V., Koroleva A.V., Zhizhin E.V., Suleimanov E.V., Kirillova N.I. Photocatalytic properties of β-pyrochlore RbTe1.5W0.5O6 under visible-light irradiation // Journal of Solid State Chemistry. 2021. Vol. 300. P. 122235. doi: 10.1016/j.jssc.2021.122235.
  26. Пат. № 2567171, Российская Федерация, C08H 1/06, A23J 1/04. Способ получения уксусной дисперсии высокомолекулярного рыбного коллагена / Л.Л. Семенычева, М.В. Астанина, Ю.Л. Кузнецова, Н.Б. Валетова, Е.В. Гераськина, О.А. Таранкова. Заявл. 06.10.2014; опубл. 10.11.2015. Бюл. № 31.
  27. Копелев П.В., Нащекина Ю.А., Александрова С.А. Сравнительный анализ трехмерных полилактидных скаффолдов различной пористости, предназначенных для восстановления хрящевой ткани // Бюллетень инновационных технологий. 2018. Т. 2. N 3. С. 25–31. EDN: XWXOSL.
  28. Садовой М.А., Ларионов П.М., Самохин А.Г., Рожнова О.М. Клеточные матрицы (скаффолды) для целей регенерации кости: современное состояние проблемы // Хирургия позвоночника. 2014. N 2. С. 79–86. doi: 10.14531/ss2014.2.79-86. EDN: YSREXR.
  29. Semenycheva L.L., Egorikhina M.N., Chasova V.O., Valetova N.B., Podguzkova M.V., Astanina M.V., et al. Enzymatic hydrolysis of collagen by pancreatin and thrombin as a step in the formation of scaffolds // Russian Chemical Bulletin. 2020. Vol. 69. P. 164–168. doi: 10.1007/s11172-020-2738-2.
  30. Semenycheva L.L., Kuleshova N.V., Mitin A.V., Belaya T.A., Mochkina D.V. Molecular weight characteristics and sorption properties of pectin extracted from different substrates // Известия вузов. Прикладная химия и биотехнология. 2020. Т. 10. N 4. С. 728–737. doi: 10.21285/2227-2925-2020-10-4-728-737. EDN: KMLLHY.
  31. Элиазян Г.А., Маркарян С.М., Пароникян А.Е., Маргарян Л.Ю. Исследование биоцидной обработки кожи средневековых книжных переплетов методом додубливания алюминиевым комплексом, стабилизированным триметилолмелемом // Вестник Национального политехнического университета Армении: Металлургия, материаловедение, недропользование. 2021. N 1. С. 82–88. doi: 10.53297/18293395-2021.1-82. EDN: HLLLTY.
  32. Пат. № 2777896С1, Российская Федерация, A61L2/00, C08H1/00, C01D17/00. Способ получения привитого сополимера метилметакрилата на коллаген / Е.В. Сулейманов, В.О. Часова, Н.Б. Валетова, Л.Л. Семенычева, Д.Г. Фукина, А.В. Корягин. Заявл. 28.10.2021; опубл. 11.08.2022. Бюл. № 23.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».