Effects of the anionactive surfactant sodium dodecyl sulfate on the adhesion of cells of the strain Micrococcus luteus 1-i to the surface of carbon materials
- Autores: Saksonov M.N.1, Zhdanova G.O.1, Stom D.I.1,2,3, Alferov S.V.4, Kupchinsky A.B.2, Petrova Y.Y.5, Sasim S.A.1, Tolstoy M.Y.3, Stom A.D.1, Chesnokova A.N.3, Kukshinov B.V.6
-
Afiliações:
- Irkutsk State University
- Baikal Museum of the SB RAS
- Irkutsk National Research Technical University
- Tula State University
- Surgut State University
- FSBI “Center of Agrochemical Service “Irkutsk”
- Edição: Volume 13, Nº 3 (2023)
- Páginas: 370-381
- Seção: Physico-chemical biology
- URL: https://ogarev-online.ru/2227-2925/article/view/301360
- DOI: https://doi.org/10.21285/2227-2925-2023-13-3-370-381
- EDN: https://elibrary.ru/UMGJYE
- ID: 301360
Citar
Texto integral
Resumo
Sobre autores
M. Saksonov
Irkutsk State University
Email: msaksonov@mail.ru
G. Zhdanova
Irkutsk State University
Email: zhdanova86@ya.ru
D. Stom
Irkutsk State University; Baikal Museum of the SB RAS; Irkutsk National Research Technical University
Email: stomd@mail.ru
S. Alferov
Tula State University
Email: s.v.alferov@gmail.com
A. Kupchinsky
Baikal Museum of the SB RAS
Email: albor67@mail.ru
Yu. Petrova
Surgut State University
Email: petrova_juju@surgu.ru
S. Sasim
Irkutsk State University
Email: sasimserg@mail.ru
M. Tolstoy
Irkutsk National Research Technical University
Email: tolstoi@istu.edu
A. Stom
Irkutsk State University
Email: apatania@yandex.ru
A. Chesnokova
Irkutsk National Research Technical University
Email: chesnokova@istu.edu
B. Kukshinov
FSBI “Center of Agrochemical Service “Irkutsk”
Email: kukshinov1@mail.ru
Bibliografia
- Lobakova E.S., Aleskerova L.E., Orlova A.A., Vasil’eva S.G., Ismailov A.D. Effect of polyethyleniminebased sorbents on the luminescence of photobacteria. Microbiology. 2017;86:155-157. https://doi.org/10.1134/S002626171701009X.
- Hurtado-Gallego J., Pulido-Reyes G., González-Pleiter M., Fernández-Piñas F. Luminescent microbial bioassays and microalgal biosensors as tools for environmental toxicity evaluation. In: Handbook of Cell Biosensors. Springer, Cham; 2022. https://doi.org/10.1007/978-3-030-23217-7_89.
- Hussain F., Ashun E., Jung S.P., Kim T., Lee S.-H., Kim D.-J., et al. A direct contact bioassay using immobilized microalgal balls to evaluate the toxicity of contaminated field soils. Journal of Environmental Management. 2022;321:115930. https://doi.org/10.1016/j.jenvman.2022.115930.
- Hamimed S., Mahjoubi Y., Abdeljelil N., Gamraoui A., Othmani A., Barhoum A., et al. Chemical sensors and biosensors for soil analysis: principles, challenges, and emerging applications. Elsevier; 2023, p. 669-698. https://doi.org/10.1016/B978-0-323-90222-9.00014-5.
- Habermüller K., Mosbach M., Schuhmann W. Electron-transfer mechanisms in amperometric biosensors. Fresenius Journal of Analytical Chemistry. 2000;366:560-568. https://doi.org/10.1007/s002160051551.
- Goswami P. Advanced materials and techniques for biosensors and bioanalytical applications. Boca Raton, CRC Press, 2020. 314 р. https://doi.org/10.1201/9781003083856.
- Mohan J.M., Amreen K., Javed A., Dubey S.K., Goel S. Emerging trends in miniaturized and microfluidic electrochemical sensing platforms. Current Opinion in Electrochemistry. 2022;33:100930. https://doi.org/10.1016/j.coelec.2021.100930.
- Andriukonis E., Celiesiute-Germaniene R., Ramanavicius S., Viter R., Ramanavicius A. From microorganism-based amperometric biosensors towards microbial fuel cells. Sensors. 2021;21(7):2442. https://doi.org/10.3390/s21072442.
- Schachinger F., Chang H., Scheiblbrandner S., Ludwig R. Amperometric biosensors based on direct electron transfer enzymes. Molecules. 2021;26(15):4525. https://doi.org/10.3390/molecules26154525.
- Alvarino T., Lema J., Omil F., Suárez S. Trends in organic micropollutants removal in secondary treatment of sewage. Reviews in Environmental Science and Biotechnology. 2018;17:447-469. https://doi.org/10.1007/s11157-018-9472-3.
- Stom D.I., Konovalov A.S., Butyrin M.V., Tyutyunin V.V., Saksonov M.V., Penzina T.A. Change in toxicity of model arsenic contaminant in the presence of humates and activated zeolites. Modern Applied Science. 2015;9(1):223-230. https://doi.org/0.5539/mas.v9n1p223.
- Kureel M.K., Geed S.R., Giri B.S., Rai B.N., Singh R.S. Biodegradation and kinetic study of benzene in bioreactor packed with PUF and alginate beads and immobilized with Bacillus sp. M3. Bioresource Technology. 2017;242:92-100. https://doi.org/10.1016/j.biortech.2017.03.167.
- Scaffaro R., Lopresti F., Catania V., Santisi S., Cappello S., Botta L., et al. Polycaprolactone-based scaffold for oil-selective sorption and improvement of bacteria activity for bioremediation of polluted water: porous PCL system obtained by leaching melt mixed PCL/PEG/NaCl composites: oil uptake performance and bioremediation efficiency. European Polymer Journal. 2017;91:260-273. https://doi.org/10.1016/j.eurpolymj.2017.04.015.
- Chen Y., Yu B., Lin J., Naidu R., Chen Z. Simultaneous adsorption and biodegradation (SAB) of diesel oil using immobilized Acinetobacter venetianus on porous material. Chemical Engineering Journal. 2016;289:463-470. https://doi.org/10.1016/j.cej.2016.01.010.
- Lin J., Gan L., Chen Z., Naidu R. Biodegradation of tetradecane using Acinetobacter venetianus immobilized on bagasse. Biochemical Engineering Journal. 2015;100:76-82. https://doi.org/10.1016/j.bej.2015.04.014.
- Khandaker Sh., Das S., Hossain Md.T., Islam A., Miah M.R., Awual Md.R. Sustainable approach for wastewater treatment using microbial fuel cells and green energy generation – a comprehensive review. Journal of Molecular Liquids. 2021;344:117795. https://doi.org/10.1016/j.molliq.2021.117795.
- Boas J.V., Oliveira V.B., Simões M., Pinto A.M.F.R. Review on microbial fuel cells applications, developments and costs. Journal of Environmental Management. 2022;307:114525. https://doi.org/10.1016/j.jenvman.2022.114525.
- Ramya M., Kumar P.S. A review on recent advancements in bioenergy production using microbial fuel cells. Chemosphere. 2022;288:132512. https://doi.org/10.1016/j.chemosphere.2021.132512.
- Thapa B.S., Kim T., Pandit S., Song Y.E., Afsharian Y.P., Rahimnejad M., et al. Overview of electroactive microorganisms and electron transfer mechanisms in microbial electrochemistry. Bioresource Technology. 2022;347:126579. https://doi.org/10.1016/j.biortech.2021.126579.
- Nielsen C.K., Kjems J., Mygind T., Snabe T., Meyer R.L. Effects of Tween 80 on growth and biofilm formation in laboratory media. Frontiers in Microbiology. 2016;22(7):1878. https://doi.org/10.3389/fmicb.2016.01878.
- Vaccari L., Allan D.B., Sharifi-Mood N., Singh A.R., Leheny R.L., Stebe K.J. Films of bacteria at interfaces: three stages of behavior. Soft Matter. 2015;11:60626074. https://doi.org/10.1039/c5sm00696a.
- Qi L., Christopher G.F. Effects of non-ionic surfactant on the formation of pellicles by Pseudomonas aeruginosa. Rheologica Acta. 2022;61:59-68. https://doi.org/10.1007/s00397-021-01313-0.
- Zhang Y., Jiang J., Zhao Q., Gao Y.Zh., Wang K., Ding J., et al. Accelerating anodic biofilms formation and electron transfer in microbial fuel cells: role of anionic biosurfactants and mechanism. Bioelectrochemistry. 2017;117:48-56. https://doi.org/10.1016/j.bioelechem.2017.06.002.
- Konovalova E.Yu., Barbora L., Chizhik K.I., Stom D.I. Micrococcus luteus and Serratia marcescens, as a new association of bioagents for microbial fuel cells. IOP Conference Series: Earth and Environmental Science. 2020;408:012080. https://doi.org/10.1088/1755-1315/408/1/012080.
- Kuznetsov A.V., Khorina N.N., Konovalova E.Yu., Amsheev D.Yu., Ponamoreva O.N., Stom D.I. Bioelectrochemical processes of oxidation of dicarboxylic amino acids by strain Micrococcus luteus 1-I in a biofuel cell. IOP Conference Series: Earth and Environmental Science. 2021;808:012038. https://doi.org/10.1088/1755-1315/808/1/012038.
- Maksimov A.Yu., Maksimova Yu.G., KuznetsovaM.V., Olontsev V.F., Demakov V.A. Immobilization of Rhodococcus ruber Strain gt1, possessing nitrile hydratase activity, on carbon support. Applied Biochemistry and Microbiology. 2007;43(2):193-198. https://doi.org/10.1134/S000368380702007X. EDN: LKSIVV.
- Wu H., Liu X., Shi Ch., Yang J., Yang Z., Zhao Sh. Action modes of surfactants on biodegradation of Wudong low-rank coal by Pseudomonas aeruginosa. Research Square. 2022. https://doi.org/10.21203/rs.3.rs-1410150/v1.
- Li Q., Logan B.E. Enhancing bacterial transport for bioaugmentation of aquifers using low ionic strength solutions and surfactants. Water Research. 1999;33(4):1090-1100. https://doi.org/10.1016/S0043-1354(98)00291-7.
- Powelson D.K., Mills A.L. Water saturation and surfactant effects on bacterial transport in sand columns. Soil Science. 1998;163(9):694-704.
- Streger S.H., Vainberg S., Dong H., Hatzinger P.B. Enhancing transport of Hydrogenophaga flava ENV735 for bioaugmentation of aquifers contaminated with methyl tert-butyl ether. Applied and Environmental Microbiology. 2002;68(11):5571-5579. https://doi.org/10.1128/АЕМ.68.11.5571-5579.2002.
- Marchesi J.R., Russell N.J., White G.F., House W.A. Effects of surfactant adsorption and biodegradability on the distribution of bacteria between sediments and water in a freshwater microcosm. Applied and Environmental Microbiology. 1991;57(9):2507-2513. https://doi.org/0099-2240/91/092507-07$02.00/0.
- Janek T., Lukaszewicz M., Krasowska A. Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiology. 2012;12:24. https://doi.org/10.1186/1471-2180-12-24.
- Koubali H., Latrache H., Zahir H., El Louali M. Kinetics of adhesion Staphylococcus aureus on glass in the presence of sodium lauryl sulfate. Journal of Surfactants and Detergents. 2021;24(3):483-490. https://doi.org/10.1002/jsde.12484.
- Sodagari M., Wang H., Newby B.Z., Ju L.K. Effect of rhamnolipids on initial attachment of bacteria on glass and octadecyltrichlorosilane-modified glass. Colloids and Surfaces B: Biointerfaces. 2013;103:121-128. https://doi.org/10.1016/j.colsurfb.2012.10.004.
- Gross M.J., Logan B.E. Influence of different chemical treatments on transport of Alcaligenes paradoxus in porous media. Applied and Environmental Microbiology. 1995;61(5):1750-1756. https://doi.org/10.1128/aem.61.5.1750-1756.1995.
- Shen Y., Li P., Chen X., Zou Y., Li H., Yuan G., et al. Activity of sodium lauryl sulfate, rhamnolipids, and N-acetylcysteine against biofilms of five common pathogens. Microbial Drug Resistance. 2020;26(3):290-299. https://doi.org/10.1089/mdr.2018.0385.
- Zhong H., Liu G., Jiang Y., Brusseau M.L., Liu Z., Liu Y., et al. Effect of low concentration rhamnolipid on transport of Pseudomonas aeruginosa ATCC 9027 in an ideal porous medium with hydrophilic or hydrophobic surfaces. Colloids and Surfaces B: Biointerfaces. 2016;139:244-248. https://doi.org/10.1016/j.colsurfb.2015.11.024.
- Liu G., Zhong H., Jiang Y., Brusseau M.L., Huang J., Shi L., et al. Effect of low-concentration rhamnolipid biosurfactant on Pseudomonas aeruginosa transport in natural porous media. Water Resources Research. 2017;53(1):361-375. https://doi.org/10.1002/2016WR019832.
Arquivos suplementares
