Catalytic properties and immobilization of enzyme preparations containing lipase of the haloalkalotolerant bacteria Pseudomonas peli and Bacillus aequororis

Cover Page

Cite item

Full Text

Abstract

In this work, we investigate the catalytic properties and immobilization of enzyme preparations containing lipase of haloalkalotolerant bacteria Pseudomonas peli and Bacillus aequororis. Lipase was isolated from the P. peli 3-T and B. aequororis 5-DB followed by its immobilization on either carboxymethylcellulose, activated chitosan or fodder yeast. The pH-dependence of native enzyme activity and thermostability, as well as the residual activity upon immobilization and drying of immobilized product, were determined. The lipase activity from both sources enhances with increasing alkalinity of the reaction medium. Specifically, P. peli 3-T lipase exhibited no activity in an acidic medium, and B. aequororis 5-DB lipase exhibited around 20% of maximum activity at a pH value of 6–7. The isolated lipase has a rather high thermostability; thus, P. peli 3-T lipase fully retains its initial activity upon heating to 60°C and 70°C for 1 h. Moreover, 15 min exposure to temperatures of 80°C and 90°C leads to an activity decrease of 73% and 83%, respectively. Activated chitosan and fodder yeast are the most promising of the studied excipients for enzyme immobilization. Drying of the immobilized lipase product on the activated chitosan showed retention of 3% and 46% of the native enzyme activity derived from P. peli 3-T and B. aequororis 5-DB, respectively. In the case of fodder yeast, these values were 2% and 64%, respectively.

About the authors

Yu. G. Maksimova

Institute of Ecology and genetics of Microorganisms, Perm Federal Research Center; Perm State University

Email: yul_max@mail.ru

E. V. Pyankova

Institute of Ecology and genetics of Microorganisms, Perm Federal Research Center; Perm State University

Email: 19katya991@rambler.ru

A. D. Eliseeva

Perm State University

Email: liamrik@list.ru

V. A. Shchetko

Institute of Microbiology of the National Academy of Sciences of Belarus

Email: vental@yandex.ru

A. Yu. Maksimov

Institute of Ecology and genetics of Microorganisms, Perm Federal Research Center; Perm State University

Email: almaks1@mail.ru

References

  1. Безбородов А.М., Загустина Н.А. Липазы в реакциях катализа в органическом синтезе (обзор) // Прикладная биохимия и микробиология. 2014. Т. 50. N 4. С. 347–373. https://doi.org/10.7868/S0555109914040187. EDN: QJJFEO.
  2. Costa-Silva T.A., Carvalho A.K.F., Souza C.R.F., De Castro H.F., Bachmann L., Said S., et al. Enhancement lipase activity via immobilization onto chitosan beads used as seed particles during fluidized bed drying: application in butyl butyrate production // Applied Catalysis A: General. 2021. Vol. 622. P. 118217. https://doi.org/10.1016/j.apcata.2021.118217.
  3. Щербинин С. Экзогенная липаза снижает стоимость корма // Корма и кормопроизводство. 2018. N 4. С. 55–57.
  4. Fujinami S., Fujisawa M. Industrial applications of alkaliphiles and their enzymes – past, present and future // Environmental Technology. 2010. Vol. 31, no. 8-9. P. 845–856. https://doi.org/10.1080/09593331003762807.
  5. Oren A. Industrialandenvironmental applicationsof halophilic microorganisms // Environmental Technology. 2010. Vol. 31, no. 8-9. P. 825–834. https://doi.org/10.1080/09593330903370026.
  6. Шилова А.В., Максимов А.Ю., Максимова Ю.Г. Выделение и идентификация алкалотолерантных бактерий с гидролитической активностью из содового шламохранилища // Микробиология. 2021. Т. 90. N 2. С. 155–165. https://doi.org/10.31857/S0026365621020130. EDN: KLWPKV.
  7. Максимова Ю.Г., Шилова А.В., Егорова В.В., Щетко В.А., Максимов А.Ю. Физиолого-биохимическая характеристика и биотехнологический потенциал гидролитических галоалкалотолерантных бактерий содового шламохранилища // Известия РАН. Серия биологическая. 2023. N 2. C. 149–159. https://doi.org/10.31857/S1026347022700068. EDN: HANYNK.
  8. Xie J., Zhang Y., Simpson B. Food enzymes immobilization: novel carriers, techniques and applications // Current Opinion in Food Science. 2022. Vol. 43. P. 27–35. https://doi.org/10.1016/j.cofs.2021.09.004.
  9. Fernandez-Lafuente R. Stabilization of multimeric enzymes: strategies to prevent subunit dissociation // Enzyme and Microbial Technology. 2009. Vol. 45, no. 6-7. P. 405–418. https://doi.org/10.1016/j.enzmictec.2009.08.009.
  10. Remonatto D., Miotti R.H., Monti R., Bassan J.C., de Paula A.V. Applications of immobilized lipases in enzymatic reactors: a review // Process Biochemistry. 2022. Vol. 114. P. 1–20. https://doi.org/10.1016/j.procbio.2022.01.004.
  11. Sampaio C.S., Angelotti J.A.F., Fernandez-Lafuente R., Hirata D.B. Lipase immobilization via crosslinked enzyme aggregates: problems and prospects – a review // International Journal of Biological Macromolecules. 2022. Vol. 215. P. 434–449. https://doi.org/10.1016/j.ijbiomac.2022.06.139.
  12. Quayson E., Amoah J., Hama S., Kondo A., Ogino C. Immobilized lipases for biodiesel production: current and future greening opportunities // Renewable and Sustainable Energy Reviews. 2020. Vol. 134. P. 110355. https://doi.org/10.1016/j.rser.2020.110355.
  13. Manan F.M.A., Attan N., Zakaria Z., Mahat N.A., Wahab R.A. Insight into the Rhizomucor miehei lipase supported on chitosan-chitin nanowhiskers assisted esterification of eugenol to eugenyl benzoate // Journal of Biotechnology. 2018. Vol. 280. P. 19–30. https://doi.org/10.1016/j.jbiotec.2018.05.015.
  14. Alves dos Santos L., Alnoch R.C., Soares G.A., Mitchell D.A., Krieger N. Immobilization of Pseudomonas fluorescens lipase on chitosan crosslinked with polyaldehyde starch for kinetic resolution of sec-alcohols // Process Biochemistry. 2022. Vol. 122. P. 238–247. https://doi.org/10.1016/j.procbio.2022.10.014.
  15. Costa-Silva T.A., Carvalho A.K.F., Souza C.R.F., Freitas L., De Castro H.F., Oliveira W.P. Highly effective Candida rugosa lipase immobilization on renewable carriers: Integrated drying and immobilization process to improve enzyme performance // Chemical Engineering Research and Design. 2022. Vol. 183. P. 41–55. https://doi.org/10.1016/j.cherd.2022.04.026.
  16. Pourkhanali K., Khayati G., Mizani F., Raouf F. Characterization of free and immobilized lipase from Penicillium sp. onto three modified bentonites: a comparative study // Journal of Biotechnology. 2022. Vol. 344. P. 57–69. https://doi.org/10.1016/j.jbiotec.2021.12.013.
  17. Tan Z., Bilal M., Li X., Ju F., Teng Y., Iqbal H.M.N. Nanomaterial-immobilized lipases for sustainable recovery of biodiesel – a review // Fuel. 2022. Vol. 316. P. 123429. https://doi.org/10.1016/j.fuel.2022.123429.
  18. Kovalenko G., Perminova L., Beklemishev A. Heterogeneous biocatalytical esterification by recombinant Thermomyces lanuginosus lipase immobilized on macroporous carbon aerogel // Catalysis Today. 2021. Vol. 379. P. 36–41. https://doi.org/10.1016/j.cattod.2020.11.018.
  19. Moguei M.R.S., Habibi Z., Shahedi M., Yousefi M., Alimoradi A., Mobini S., et al. Immobilization of Thermomyces lanuginosus lipase through isocyanidebased multi component reaction on multi-walled carbon nanotube: application for kinetic resolution of rac-ibuprofen // Biotechnology Reports. 2022. Vol. 35. P. e00759. https://doi.org/10.1016/j.btre.2022.e00759.
  20. Sun Y., Guo M., Hu S., Fang X., Jin Z., Wu R. Nanosurface-immobilized lipase and its degradation of phthalate wastewater // Molecular Catalysis. 2022. Vol. 529. P. 112522. https://doi.org/10.1016/j.mcat.2022.112522.
  21. Badoei-dalfard A., Tahami A., Karami Z. Lipase immobilization on glutaraldehyde activated graphene oxide/chitosan/cellulose acetate electrospun nanofibrous membranes and its application on the synthesis of benzyl acetate // Colloids and Surfaces B: Biointerfaces. 2022. Vol. 209. P. 112151. https://doi.org/10.1016/j.colsurfb.2021.112151.
  22. Ghide M.K., Li K., Wang J., Abdulmalek S.A., Yan Y. Immobilization of Rhizomucor miehei lipase on magnetic multiwalled carbon nanotubes towards the synthesis of structured lipids rich in sn-2 palmitic acid and sn-1,3 oleic acid (OPO) for infant formula use // Food Chemistry. 2022. Vol. 390. P. 133171. https://doi.org/10.1016/j.foodchem.2022.133171.
  23. Yu D., Li Z., Zhou X., Wang W., Wang L., Liu T., et al. Study on the modification of magnetic graphene oxide and the effect of immobilized lipase // International Journal of Biological Macromolecules. 2022. Vol. 216. P. 498–509. https://doi.org/10.1016/j.ijbiomac.2022.06.203.
  24. Bilal M., Iqbal H.M.N. Naturally-derived biopolymers: potential platforms for enzyme immobilization // International Journal of Biological Macromolecules. 2019. Vol. 130. P. 462–482. https://doi.org/10.1016/j.ijbiomac.2019.02.152.
  25. Sharma A., Thatai K.S., Kuthiala T., Singh G., Arya S.K. Employment of polysaccharides in enzyme immobilization // Reactive and Functional Polymers. 2021. Vol. 167. P. 105005. https://doi.org/10.1016/j.reactfunctpolym.2021.105005.
  26. Vassiliadi E., Aridas A., Schmitt V., Xenakis A., Zoumpanioti M. (Hydroxypropyl)methyl cellulose-chitosan film as a matrix for lipase immobilization: operational and morphological study // Molecular Catalysis. 2022. Vol. 522. P. 112252. https://doi.org/10.1016/j.mcat.2022.112252.
  27. Холназаров Б.А., Тураев Х.Х., Назаров Ю.Э. Синтез гидрогелей на основе биоматериалов крахмала и натрий-карбоксиметилцеллюлозы // Universum: химия и биология. 2020. N 10. C. 57–60.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).