Molecular weight and molecular weight distribution of sericin protein extracted from cocoon waste of Bombyx mori
- Autores: Sherova Z.U.1, Nasriddinov A.S.1, Kholov S.Е.1, Usmanova S.R.1, Muhidinov Z.K.1
-
Afiliações:
- V.I. Nikitin Institute of Chemistry, NAS Republic of Tajikistan
- Edição: Volume 12, Nº 4 (2022)
- Páginas: 547-556
- Seção: Physico-chemical biology
- URL: https://ogarev-online.ru/2227-2925/article/view/301204
- DOI: https://doi.org/10.21285/2227-2925-2022-12-4-547-556
- ID: 301204
Citar
Texto integral
Resumo
Palavras-chave
Sobre autores
Z. Sherova
V.I. Nikitin Institute of Chemistry, NAS Republic of Tajikistan
Email: sh.zamira_95@mail.ru
A. Nasriddinov
V.I. Nikitin Institute of Chemistry, NAS Republic of Tajikistan
Sh. Kholov
V.I. Nikitin Institute of Chemistry, NAS Republic of Tajikistan
Email: shavkat.kholov@yandex.ru
S. Usmanova
V.I. Nikitin Institute of Chemistry, NAS Republic of Tajikistan
Email: surayo.usmanova@gmail.com
Z. Muhidinov
V.I. Nikitin Institute of Chemistry, NAS Republic of Tajikistan
Email: zainy@mail.ru
Bibliografia
- Su D., Ding S., Shi W., Huang X., Jiang L. Bombyx mori silk-based materials with implication in skin repair: Sericin versus regenerated silk fibroin // Journal of Biomaterials Applications. 2019. Vol. 34, no. 1. P. 36– 46. https://doi.org/10.1177/0885328219844978.
- Das G., Shin H. S., Campos E. V. R., Fraceto L. F., Rodriguez-Torres M. P., Mariano K. C. F., et al. Sericin based nanoformulations: a comprehensive review on molecular mechanisms of interaction with organisms to biological applications // Journal of Nanobiotechnology. 2021. Vol. 19. https://doi.org/10.1186/s12951-021-00774-y.
- Costa F., Silva R., Boccaccini A. Fibrous proteinbased biomaterials (silk, keratin, elastin, and resilin proteins) for tissue regeneration and repair // Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair. 2018. P. 175–204. https://doi.org/10.1016/B978-0-08-100803-4.00007-3.
- Yin Z., Kuang D., Wang S. Swellable silk fibroin microneedles for transdermal drug delivery // International Journal of Biological Macromolecules. 2017. Vol. 106. P. 48–56. https://doi.org/10.1016/j.ijbiomac.2017.07.178.
- Jena K., Pandey J. P., Kumari R. Tasar silk fiber waste sericin: new source for anti-elastase, anti-tyrosinase and anti-oxidant compounds // International Journal of Biological Macromolecules. 2018. Vol. 114. P. 1102–1108. https://doi.org/10.1016/j.ijbiomac.2018.03.058.
- Kunz R. I., Brancalhao R. M., Ribeiro L. F., Natali M. R. M. Silkworm sericin: properties and biomedical applications // BioMed Research International. 2016. P. 8175701. https://doi.org/10.1155/2016/8175701.
- Noosak C., Jantorn P., Meesane J., Voravuthikunchai S., Saeloh D. Dualfunctional bioactive silk sericin for osteoblast responses and osteomyelitis treatment // Plos One. 2022. https://doi.org/10.1371/journal.pone.0264795.
- Kumar M., Janani G., Fontaine M. J., Kaplan D. L., Mandal B. B. Silk-based encapsulation materials to enhance pancreatic cell functions // Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas. 2020. Vol. 2. P. 329–337. https://doi.org/10.1016/B978-0-12-814831-0.00024-5.
- Inoue S., Tsuda H., Tanaka T. Nanostructure of natural fibrous protein: in vitro nanofabric formation of Samia cynthia ricini wild silk fibroin by selfassembling // Nano Letters. 2003. Vol. 3, no. 10. P. 1329–1332. https://doi.org/10.1021/nl0340327.
- Eshchanov K., Baltayeva M. Determination of the molecular mass of hydrolyzed fibroin obtained from natural silk fibroin by spectrophotometry // Journal of the Turkish Chemical Society Section A: Chemistry. 2022. Vol. 9, no. 1. P. 115–120. https://doi.org/10.18596/jotcsa.969482.
- Villar-Piqué A., Schmitz M., Candelise N., Ventura S., Llorens F., Zerr I. Molecular and clinical aspects of protein aggregation assays in neurodegenerative Diseases // Molecular Neurobiology. 2018. Vol. 55. P. 7588–7605. https://doi.org/10.1007/s12035-018-0926-y.
- Aramwit P., Damringasakkul S., Kanokpanont S., Srichana T. Properties and anti-tyrosinase activity of sericin from various extraction methods // Biotechnology and Applied Biochemistry. 2010. Vol. 55. P. 91–98. http://doi.org/10.1042/BA20090186.
- Kurioka A., Kurioka F., Yamazaki M. Characterization of sericin powder prepared from citric acid degraded sericin polypeptides of silkworm, Bombyx mori // Bioscience, Biotechnology, and Biochemistry. 2004. Vol. 68, no. 4. P. 774–780. https://doi.org/10.1271/bbb.68.774.
- Aramwit P., Sirtientong T., Srichna T. Potential applications of silk sericin a natural protein from textile industry by-products // Waste Management & Research: The Journal for a Sustainable Circular Economy. 2012. Vol. 30, no. 3. P. 217–224. https://doi.org/10.1177/0734242X11404733.
- Gimenes M. L., Silva V. R., Vieira M. G. A., Silva M. G. C., Scheer A. P. High molecular sericin from Bombyx mori cocoons: extraction and recovering by ultrafiltration // International Journal of Chemical Engineering and Applications. 2014. Vol. 5, no. 3. P. 266–271. https://doi.org/10.7763/IJCEA.2014.V5.391.
- Takasu Y., Yamada H., Tsubouchi K. Isolation of three main sericin components from the cocoon of the silkworm, Bombyx mori // Bioscience, Biotechnology and Biochemistry. 2002. Vol. 66, no. 12. P. 2715–2718. https://doi.org/10.1271/bbb.66.2715.
- Wu M.-H., Yue J.-X., Zhang Y.-Q. Ultrafiltration recovery of sericin from the alkaline waste of silk floss processing and controlled enzymatic hydrolysis // Journal of Cleaner Production. 2014. Vol. 76. P. 154– 160. http://dx.doi.org/10.1016/j.jclepro.2014.03.068.
- Some D., Amartely H., Tsadok A., Lebendiker M. Characterization of proteins by size-exclusion chromatography coupled to multi-angle light scattering (SECMALS) // Journal of Visualized Experiments. 2019. Vol. 148. P. e59615. https://doi.org/10.3791/59615.
- Barnett G. V., Perhacs J. M., Das T. K., Kar S. R. Submicron protein particle characterization using resistive pulse sensing and conventional light scattering based approaches // Pharmaceutical Research. 2018. Vol. 35, no. 58. https://doi.org/10.1007/s11095-0172306-0.
- Muhidinov Z. K., Teshaev Kh., Jonmurodov A., Khalikov D., Fishman M. Physico-chemical characterization of pectic polysaccharides from various sources obtained by steam assisted flash extraction (SAFE) // Macromolecular Symposia. 2012. Vol. 317-318, no. 1. P. 142–148. https://doi.org/10.1002/masy.201100108.
- Strop P., Brunger A. T. Refractive index-based determination of detergent concentration and its application to the study of membrane proteins // Protein Science: a Publication of the Protein Society. 2005. Vol. 14, no. 8. P. 2207–2211. http://doi.org/10.1110/ps.051543805.
- Da Silva T. L., Da Silva Junior A. C., Ribani M., Vieira M. G. A., Gimenes M. L., Da Silva M. G. C. Evaluation of molecular weight distribution of sericin in solutions concentrated via precipitation by ethanol and precipitation by freezing/thawing // Chemical Engineering Transactions. 2014. Vol. 38. P. 103–108. http://doi.org/10.3303/CET1438018.
- Насриддинов А. С., Ашуров А. И., Холов Ш. Ё., Исмоилов И. Б., Усманова С. Р., Мухидинов З. К. Самоагрегирующие свойства инулина в разбавленном растворе // Известия вузов. Прикладная химия и биотехнология. 2022. Т. 12. N 1. С. 38–49. https://doi.org/10.21285/2227-2925-202212-1-38-49.
Arquivos suplementares
