Potential use of basidiomycota Trametes hirsuta MT-17.24 in biodegradation of polyanionic cellulose

Cover Page

Cite item

Full Text

Abstract

Abstract: Despite their efficiency, existing methods to dispose of drilling fluids used in the construction of oil and gas wells (chemical treatment of spent solutions, thermal method, thickening) are often expensive and unsustainable. Basidiomycota are natural xylotroph destructors that process lignocellulosic substrate – one of the most stable biopolymers in nature. Prospects for using enzyme preparations based on Basidiomycota as biodestructors of organic substances are evident due to the high efficiency and zero-waste production. The aim was to obtain an enzyme preparation based on the Trametes hirsute MT-17.24 Basidiomycota strain and evaluate its ability to biodegrade polyanionic cellulose, used as a viscosifier for drilling fluids in the construction and repair of oil and gas wells. Screening of cellulase activity of the following strains was carried out: Fomitopsis pinicola MT-5.21, Fomes fomentarius MT-4.05, Lactarius necator, Schizophyllum commune MT-33.01, Trametes versicolor It-1, Trametes hirsute MT-17.24, Trametes hirsuta MT-24.24. To obtain the enzyme preparation, the T. hirsuta MT-17.24 strain was selected, which demonstrated the highest coefficient of cellulase activity (10.9). A medium for solid-phase cultivation of this strain was selected. Enzymatic activity of the enzyme preparation was studied on a model drilling fluid. A 10-hour experiment showed that the use of a 1% enzyme preparation leads to a decrease in the plastic viscosity of the drilling fluid from 16 to 8 mPa·s. The research results demonstrate the efficiency of enzyme preparations based on Basidiomycota in the biodestruction of polyanionic cellulose.

About the authors

A. V. Zubchenko

Gubkin University (National University of Oil and Gas)

Email: zubchenkoan@yandex.ru

E. Yu. Kozhevnikova

Gubkin University (National University of Oil and Gas)

Email: elena_karpova89@bk.ru

A. V. Barkov

Gubkin University (National University of Oil and Gas)

Email: barkov220@gmail.com

Yu. A. Topolyuk

Gubkin University (National University of Oil and Gas)

Email: topolyuk.y@gubkin.ru

A. V. Shnyreva

Moscow State University named after M.V. Lomonosov

Email: ashn@mail.ru

V. A. Vinokurov

Gubkin University (National University of Oil and Gas)

Email: inok.ac@mail.ru

L. A. Magadova

Gubkin University (National University of Oil and Gas)

Email: lubmag@gmail.com

References

  1. Mahto V., Sharma V.P. Rheological study of a water based oil well drilling fluid // Journal of Petroleum Science and Engineering. 2004. Vol. 45. Issue 1-2. P. 123–128. https://doi.org/10.1016/j.petrol.2004.03.008
  2. Gao X., Chang Y., Shi L., Li H., Zhao J., Sha B., et al. Treatment of waste drilling mud by domesticated complex microbial flora // Acta Microbiologica Sinica. 2019. Vol. 59. Issue 01. P.134–144. https://doi.org/10.13343/j.cnki.wsxb.20180093-en
  3. Bland R.G., Clapper D.K., Fleming N.M., Hood C.A. Biodegradation and drilling fluid chemicals. Society of Petroleum Engineers. SPE/IADC Drilling Conference, Amsterdam Netherlands. 22–25 February 1993. https://doi.org/10.2118/25754-ms
  4. Al-Hameedi A.T.T., Alkinani H.H., Alkhamis M.M., Dunn-Norman S. Utilizing a new eco-friendly drilling mud additive generated from wastes to minimize the use of the conventional chemical additives // Journal of Petroleum Exploration and Production Technology. 2020. Vol. 10. P. 3467–3481. https://doi.org/10.1007/s13202-020-00974-6
  5. Elisashvili V.I., Khardziani T.Sh., Tsiklauri N.D., Kachlishvili E.T. Cellulase and xylanase activities in higher basidiomycetes // Biochemistry (Moscow). 1999. Vol. 64. Issue 6. P. 718–722. https://doi.org/10.1023/B:WIBI.0000043195.80695.17
  6. Khvedelidze R., Tsiklauri N., Kutateladze L., Sadunishvili T., Darbaidze Z., Kvesitadze E. Enzymatic hydrolysis of lignocellulosic agricultural wastes to fermentable glucose // Agricultural Research and Technology: Open Access Journal.2018. Vol. 17. Issue 5. P. 00199–00205. 556042. https://doi.org/10.19080/ARTOAJ.2018.17.556042
  7. Максина Е.В., Пименов А.А., Ермаков В.В., Быков Д.Е. Экспериментальная оценка возмож- ности применения ферментативного обезвожи- вания отработанного бурового раствора // Нефтяное хозяйство 2014. N 9. С. 125-127.
  8. Kozhevnikova E.Y., Petrova D.A., Novikov A.A., Shnyreva A.V., Barkov A.V., Vinokurov V.A. Prospects for the use of new basidiomycete strains for the direct conversion of lignocellulose into ethanol // Applied Biochemistry and Microbiology. 2017. Vol. 53. Issue 5. P. 557–561. https://doi.org/10.1134/S0003683817050106
  9. Максина Е.В., Ермаков В.В. Биологическая деструкция отработанных полисахаридсодер- жащих буровых растворов // Экология и про- мышленность России. 2016. Т. 20. N 9. C. 12–15. https://doi.org/10.18412/1816-0395-2016-9-12-15
  10. Karlsson J., Momcilovic D., Wittgren B., Schülein M., Tjerneld F., Brinkmalm G. Enzymatic degradation of carboxymethyl cellulose hydrolyzed by the endoglucanases Cel5A, Cel7B, and Cel45A from Humicola insolens and Cel7B, Cel12A and Cel45Acore from Trichoderma reesei // Biopolymers. 2001. Vol. 63. Issue 1. P. 32–40. https://doi.org/10.1002/bip.1060
  11. Kozhevnikova E.Y., Petrova D.A., Novikov A.A., Shnyreva A.V., Barkov A.V., Vinokurov V.A. Prospects for the use of new basidiomycete strains for the direct conversion of lignocellulose into ethanol // Applied Biochemistry and Microbiology. 2017. Vol. 53. Issue 5. P. 557–561. https://doi.org/10.1134/S0003683817050106
  12. Betty Anita B., Thatheyus A.J., Ramya D. Biodegradation of carboxymethyl cellulose using Aspergillus flavus // Science International. 2013. Vol. 1. Issue 4. P. 85–91. https://doi.org/10.17311/sciintl.2013.85.91
  13. Kozhevnikova E.Y., Petrova D.A., Kopitsyn D.S., Novikov A.A., Shnyreva A.V., Barkov A.V., et al. New strains of basidiomycetes that produce bioethanol from lignocellulose biomass // Applied Biochemistry and Microbiology. 2016. Vol. 52. Issue 6. P. 638–642. https://doi.org/10.1134/S0003683816060090
  14. Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Current Microbiology. 2008;57(5):503–507. https://doi.org/10.1007/s00284-008-9276-8
  15. Bradner J.R., Gillings M., Nevalainen K.M.H. Qualitative assessment of hydrolytic activities in Antarctic microfungi grown at different temperatures on solid media // World Journal of Microbiology and Biotechnology. 1999. Vol. 15. Issue 1. P. 131–132. https://doi.org/10.1023/A:1008855406319
  16. Kreutz С., Timmer J. Systems biology: experimental design // The FEBS Journal. 2009. Vol. 276. Issue 4. P. 923–942. https://doi.org/10.1111/j.1742-4658.2008.06843.x
  17. Bisswanger H. Practical enzymology. Second, completely revised edition. Weinheim: Wiley-VCH Verlag GmbH and Co, 2011. 376 p.
  18. Miller G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar // Analytical Chemistry. 1959. Vol. 31. Issue 3. P. 426–428. https://doi.org/10.1021/ac60147a030
  19. Ghose T.K. Measurement of cellulase activities // Pure and Applied Chemistry. 1987. Vol. 59. Issue 2. P. 257–268. https://doi.org/10.1351/pac198759020257

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).