Study into biodegradation of cocamidopropyl betaine, an amphoteric surfactant, by Pseudomonas bacteria and activated sludge

Capa

Citar

Texto integral

Resumo

Abstract: The paper examines the biodegradation rate of cocamidopropyl betaine by bacteria of the genus Pseudomonas and activated sludge. The following microorganisms were taken as destructor strains: Pseudomonas fluorescens TR (VKPM B-4881), Pseudomonas putida TP-19 (B-6582), Pseudomonas stutzeri T (B-4904), Pseudomonas putida TSh-18 (B-2950), Pseudomonas putida TO (B-3959), Pseudomonas mendocina 2S (B-4710), Pseudomonas oleovorans TF4-1L (B-8621) and activated sludge obtained at activated sludge reactors of a Kuzbass plant. Biooxidation of surfactant samples was carried out in 250 cm3 glass flasks, placed into an incubator shaker, at a constant temperature of 30ºС for pure cultures and 18ºС for activated sludge. The destructor strain should reduce the surfactant concentration to safe values within a minimum time interval. Pseudomonas stutzeri T (B-4904) and Pseudomonas fluorescens TR (B-4881) strains provided the shortest half-life of the surfactant under study – 2.5 and 2.6 days, respectively. For Pseudomonas putida TO (B-3959), Pseudomonas putida TSh-18 (B-2950) and Pseudomonas oleovorans TF4-1L (B-8621) strains, these values amounted to 3.0, 4.5 and 4.9 days, respectively. The maximum half-life of the surfactant under study was demonstrated by Pseudomonas mendocina 2S (B-4710) and Pseudomonas putida TP-19 (B-6582) microorganisms – 5.5 and 6.0 days, respectively. The maximum biodegradation of the surfactant was observed under its exposure to the biocenosis of microorganisms. Over 14 days, the concentration of cocamidopropyl betaine decreased to 0.27% of its initial concentration. The efficiency of Pseudomonas bacteria as destructors of surfactants was demonstrated. Bacteria of this genus exhibit a shorter generation time and a higher rate of biomass growth when compared to other strains and a shorter period of adaptation to surfactants when compared to activated sludge. Capable of reducing surfactant concentrations to safe values in a minimum time interval, Pseudomonas strains can be used as an effective agent in the development of technologies for wastewater purification from amphoteric surfactants.

Sobre autores

A. Burlachenko

Kemerovo State University

Email: nastya_sergeevna99@mail.ru

O. Salishcheva

Kemerovo State University

Email: salishchevaov@mail.ru

L. Dyshlyuk

Kemerovo State University

Email: soldatovals1984@mail.ru

Bibliografia

  1. Hamouda T., Myc A., Donovan B., Shih A.Y., Reuter J.D., Baker J.R. A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi // Microbiological Research. 2001. Vol. 156. Issue 1. P. 1–7. https://doi.org/10.1078/0944-5013-00069
  2. Reijmar K., Schmidtchen A., Malmsten M. Bactericidal and hemolytic properties of mixed LL-37/surfactant systems // Journal of Drug Delivery Science and Technology. 2007. Vol. 17. Issue 4. P. 293– 297. https://doi.org/10.1016/S1773-2247(07)50098-5
  3. Salishcheva O.V., Prosekov A.Y. Antimicrobial activity of mono- and polynuclear platinum and palladium complexes // Foods and Raw Materials. 2020. Vol. 8. Issue 2. P. 298–311. https://doi.org/10.21603/2308-4057-2020-2-298-311
  4. Finnerty W.R. Biosurfactants in environmental biotechnology // Current Opinion in Biotechnology. 1994. Vol. 5. Issue 3. P. 291–295. https://doi.org/10.1016/0958-1669(94)90031-0
  5. Souza E.C., Vessoni-Penna T.C., de Souza Oliveira R.P. Biosurfactant-enhanced hydrocarbon bioremediation: An overview // International Biodeterioration and Biodegradation. 2014. Vol. 89. P. 88– 94. https://doi.org/10.1016/j.ibiod.2014.01.007
  6. Shao W., Zhang J., Wang K., Liu C., Cui S. Cocamidopropyl betaine-assisted foam separation of freshwater microalgae Desmodesmus brasiliensis // Biochemical Engineering Journal. 2018. Vol. 140. P. 38–46. https://doi.org/10.1016/j.bej.2018.09.006
  7. Vonlanthen S., Brown M.T., Turner A. Toxicity of the amphoteric surfactant, cocamidopropyl betaine, to the marine macroalga, Ulva lactuca // Ecotoxicology. 2018. Vol. 20. Issue 1. P. 202–207. https://doi.org/10.1007/s10646-010-0571-3
  8. Sun X.-X., Han K.-N., Choi J.-K., Kim E.-K. Screening of surfactants for harmful algal blooms mitigation // Marine Pollution Bulletin. 2004. Vol. 48. Issue 9-10. P. 937–945. https://doi.org/10.1016/j.marpolbul.2003.11.021
  9. Nogales L.M., Jiménez L.L., Abarca L.E., Gil M.M., López-Nieves M. Cocamidopropyl Betaine Surfactant 0.075% Solution in Physiological Serum for Hygiene Process of COVID-19 Intubated Patients // International Journal of Pharmaceutical Compounding. 2020. Vol. 24. Issue 5. P. 358–364.
  10. Garcia M.T., Campos E., Ribosa I. Biodegradability and ecotoxicity of amine oxide based surfactants // Chemosphere. 2007. Vol. 69. Issue 10. P. 1574–1578. https://doi.org/10.1016/-j.chemosphe-re.2007.05.089
  11. Rios F., Lechuga M., Fernandez-Serrano M., Fernandez-Arteaga A. Aerobic biodegradation of amphoteric amine-oxide-based surfactants: effect of molecular structure, initial surfactant concentration and pH // Chemosphere. 2017. Vol. 171. P. 324– 331. https://doi.org/10.1016/j.chemosphere.2016.12.070
  12. Merkova M., Zalesak M., Ringlova E., Julinova M., Ruzicka J. Degradation of the surfactant Cocamidopropyl betaine by two bacterial strains isolated from activated sludge // International Biodeterioration and Biodegradation. 2018. Vol. 127. P. 236–240. https://doi.org/10.1016/j.ibiod.2017.12.006
  13. Коршунова Т.Ю., Кузина Е.В., Рафикова Г.Ф., Логинов О.Н. Бактерии рода Pseudomonas для очистки окружающей среды от нефтяного загрязнения // Экобиотех. 2020. Т. 3, N 1. С. 18-32. https://doi.org/10.31163/2618-964X-2020-3-1-18-32
  14. Филатов Д.А., Овсянникова В.С., Алтунина Л.К., Сваровская Л.И. Влияние композиций на основе ПАВ на биодеструкцию вязких парафинистых нефтей // Известия вузов. Прикладная химия и биотехнология. 2012. N 1(2). С. 106–112.
  15. Закиров Р.К., Ахмадуллина Ф.Ю., Балымова Е.С. Перспективы сонохимической обработки сточных вод, содержащих синтетические поверхностно-активные вещества // Теоретическая и прикладная экология. 2020. N 4. С. 111–116. https://doi.org/10.25750/1995-4301-2020-4-111-116
  16. Gholami A., Golestaneh M., Andalib Z. A new method for determination of cocamidopropyl betaine synthesized from coconut oil through spectral shift of Eriochrome Black T // Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy. 2018. Vol. 192. P. 122–127. https://doi.org/10.1016/j.saa.2017.11.007
  17. Asabina E.A., Chetverikov S.P., Loginov O.N. Optimization of biosynthesis of phytopathogen growth inhibitors by bacteria of Pseudomonas genus // Biotechnology in Russia. 2009. Issue 3. P. 81–89.
  18. Анохина Т.О., Сиунова Т.В., Сизова О.И., Захарченко Н.С., Кочетков В.В. Ризосферные бактерии рода Pseudomonas в современных агробиотехнологиях // Агрохимия. 2018. N 10. С. 54–66. https://doi.org/10.1134/S0002188118100034
  19. Сибиева Л.М., Дегтярева И.А., Сироткин А.С., Бабынин Э.В. Состав микробного сообщества активного ила в процессах совместной биологической и реагентной очистки сточных вод // Известия вузов. Прикладная химия и биотехнология. 2019. Т. 9. N 2. С. 302–312. https://doi.org/10.21285/2227-2925-2019-9-2-302-312
  20. Кобзев Е.Н., Петрикевич С.Б., Шкидченко А.Н. Исследование устойчивости ассоциации микроорганизмов-нефтедеструкторов в открытой системе // Прикладная биохимия и микробиология. 2001. Т. 37. N 4. С. 413–417.
  21. Шкидченко А.Н., Аринбасаров М.У. Изучение нефтедеструктивной активности микрофлоры прибрежной зоны Каспийского моря // Прикладная биохимия и микробиология. 2002. Т. 38. N 5. С. 509–512.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).