Phototrophs in alternative energy
- Authors: Konovalo M.S.1, Konovalova E.Y.2, Egorova I.N.3, Zhdanova G.O.2, Stom D.I.2,4
-
Affiliations:
- Irkutsk State University,
- Irkutsk State University
- Siberian Institute of Plant Physiology and Biochemistry SB RAS
- Issue: Vol 11, No 3 (2021)
- Pages: 358-371
- Section: Physico-chemical biology
- URL: https://ogarev-online.ru/2227-2925/article/view/301097
- DOI: https://doi.org/10.21285/2227-2925-2021-11-3-358-371
- ID: 301097
Cite item
Full Text
Abstract
About the authors
M. S. Konovalo
Irkutsk State University,
Email: mikkonovalov@yandex.ru
E. Yu. Konovalova
Irkutsk State University
Email: elenka_kvasya@list.ru
I. N. Egorova
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Email: egorova@sifibr.irk.ru
G. O. Zhdanova
Irkutsk State University
Email: zhdanova86@ya.ru
D. I. Stom
Irkutsk State University;
Email: stomd@mail.ru
References
- Skjånes K., Rebours C., Lindblad P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process // Critical Reviews in Biotechnology. 2013. Vol. 33. Issue 2. P. 172–215. https://doi.org/10.3109/07388551.2012.681625
- Vershinin A. Biological functions of carotenoidsdiversity and evolution // Biofactors. 1999. Vol. 10. Issue 2-3. P. 99–104. https://doi.org/10.1002/biof.5520100203
- Chisti Y. Biodiesel from microalgae // Biotechnology Advances. 2007. Vol. 25. Issue 3. P. 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001
- Ullah K., Ahmad M., Sharma V.K., Lu P., Harvey A., Zafar M., et al. Algal biomass as a global source of transport fuels: Overview and development perspectives // Progress in Natural Science: Materials International. 2014. Vol. 24. Issue 4. P. 329–339. https://doi.org/10.1016/j.pnsc.2014.06.008
- Olivieri G., Salatino P., Marzocchella A. Advances in photobioreactors for intensive microalgal production: Configurations, operating strategies and applications // Journal of Chemical Technology and Biotechnology. 2013. Vol. 89. Issue 2. P. 178–195. https://doi.org/10.1002/jctb.4218
- Liu H., Cheng S., Logan B.E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration // Environmental Science & Technology. 2005. Vol. 39. Issue 14. P. 5488–5493. https://doi.org/10.1021/es050316c
- Oh S.E., Min B., Logan B.E. Cathode performance as a factor in electricity generation in microbial fuel cells // Environmental Science & Technology. 2004. Vol. 38. Issue 18. P. 4900–4904. https://doi.org/10.1021/es049422p
- Pham T.H., Jang J.K., Chang I.S., Kim B.H. Improvement of cathode reaction of a mediator–less microbial fuel cell // Journal of Microbial Biotechnology. 2004. Vol. 14. Issue 2. P. 324–329.
- Yagishita T., Sawayama S., Tsukahara K.-I., Ogi T. Effects of intensity of incident light and concentrations of Synechococcus sp. and 2-hydroxy-1,4- naphthoquinone on the current output of photosynthetic electrochemical cell // Solar Energy. 1997. Vol. 61. Issue 5. P. 347–353. https://doi.org/10.1016/S0038-092X(97)00069-8
- Juang D.F., Lee C.H., Hsueh S.C. Comparison of electrogenic capabilities of microbial fuel cell with different light power on algae grown cathode // Bioresource Technology. 2012. Vol. 123. P. 23–29. https:// doi.org/10.1016/j.biortech.2012.07.041
- Del Campo A.G., Cañizares P., Rodrigo M.A., Fernández F.J., Lobato J. Microbial fuel cell with an algae-assisted cathode: A preliminary assessment // Journal of Power Sources. 2013. Vol. 242. P. 638– 645. https://doi.org/10.1016/j.jpowsour.2013.05.110
- Singh S.P., Singh P. Effect of CO2 concentration on algal growth: A review // Renewable and Sustainable Energy Reviews. 2014. Vol. 38. P. 172–179. https://doi.org/10.1016/j.rser.2014.05.043
- Fu C.-C., Hung T.-C., Wu W.-T., Wen T.-C., Su C.-H. Current and voltage responses in instant photosynthetic microbial cells with Spirulina platensis // Biochemical Engineering Journal. 2010. Vol. 52. Issues 2- 3. P. 175–180. https://doi.org/10.1016/j.bej.2010.08.004
- Meirong M., Xiaoju Sh., Limin C., Zongwu D. The operation of photosynthetic microbial fuel cells powered by Anabaena variabilis. In: Proceedings of 2013 International Conference on Materials for Renewable Energy and Environment. 2013. P. 968–972. https://doi.org/10.1109/ICMREE.2013.6893833
- Cao Y., Mu H., Liu W., Zhang R., Guo J., Xian M., Liu H. Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities // Microbial Cell Factories. 2019. Vol. 18. Issue 1. Article number 39. https://doi.org/10.1186/s12934-019-1087-z
- Aiyer K.S. Synergistic effects in a microbial fuel cell between co-cultures and a photosynthetic alga Chlorella vulgaris improve performance // Heliyon. 2021. Vol. 7. Issue 1. e05935. https://doi.org/10.1016/j.heliyon.2021.e05935
- Mao L., Verwoerd W.S. Genome-scale stoichiometry analysis to elucidate the innate capability of the cyanobacterium Synechocystis for electricity generation // Journal of Industrial Microbiology and Biotechnology. 2013. Vol. 40. Issue 10. P. 1161–1180. https:// doi.org/10.1007/s10295-013-1308-0
- Hadiyanto H., Christwardana M., Minasheila T., Wijaya Y.H. Effects of Yeast Concentration and Microalgal Species on Improving the Performance of Microalgal- Microbial Fuel Cells (MMFCs) // International Energy Journal. 2020. Vol. 20. Issue 3. P. 337–344. http://www.rericjournal.ait.ac.th/index.php/reric/article/view/2337
- Strik D.P.B.T.B., Hamelers H.V.M., Buisman C.J.N. Solar energy powered microbial fuel cell with a reversible bioelectrode // Environmental Science & Technology. 2010. Vol. 44. Issue 1. P. 532–537. https://doi.org/10.1021/es902435v
- Otadi M., Poormohamadian S., Zabihi F., Goharrokhi M. Microbial fuel cell production with alga // World Applied Sciences Journal. 2011. Vol. 14. P. 91–95.
- Velasquez-Orta S.B., Curtis T.P., Logan B.E. Energy from algae using microbial fuel cells // Biotechnology and Bioengineering. 2009. Vol. 103. Issue 6. P. 1068–1076. https://doi.org/10.1002/bit.22346
- Mahesh S., Tadesse D., Melkamu A. Evaluation of photosynthetic microbial fuel cell for bioelectricity production // Indian Journal of Energy. 2013. Vol. 2. Issue 4. P. 116–120.
- Yadav A.K., Panda P., Rout P., Behara S., Patra A.K., Nayak S.K., et al. Entrapment of algae for waste water treatment and bioelectricity generation in microbial fuel cell. In: Proceedings of XVIIth International Conference on Bioencapsulation. 2009. P. 24–26.
- Logan B.E. Microbial Fuel Cells. Wiley, 2008. 216 p. https://doi.org/10.1002/9780470258590
- Powell E.E., Mapiour M.L., Evitts R.W., Hill G.A. Growth kinetics of Chlorella vulgaris and its use as a cathodic half-cell // Bioresource Technology. 2009. Vol. 100. Issue 1. P. 269–274. https://doi.org/10.1016/j.biortech.2008.05.032
- Jiang H.-M., Luo S.-Ju., Shi X.-S., Dai M., Guo R.-B. A system combining microbial fuel cell with photobioreactor for continuous domestic wastewater treatment and bioelectricity generation // Journal of Central South University. 2013. Vol. 20. Issue 2. P. 488–494. https://doi.org/10.1007/s11771-013-1510-2
- Pandit S., Ghosh S., Ghangrekar M., Das D. Performance of an anion exchange membrane in association with cathodic parameters in a dual chamber microbial fuel cell // International Journal of Hydrogen Energy. 2012. Vol. 37. Issue 11. P. 9383–9392. https://doi.org/10.1016/j.ijhydene.2012.03.011
- Lan J.C.-W., Raman K., Huang Ch.-M., Chang Ch.-M. The impact of monochromatic blue and red LED light upon performance of photo microbial fuel cells (PMFCs) using Chlamydomonas reinhardtii transformation F5 as biocatalyst // Biochemical Engineering Journal. 2013. Vol. 78. P. 39–43. https://doi.org/10.1016/j.bej.2013.02.007
- Strik D.P.B.T.B., Hamelers (Bert) H.V.M., Snel J.F.H., Buisman C.J.N. Green electricity production with living plants and bacteria in a fuel cell // International Journal of Energy Research. 2008. Vol. 32. Issue 9. P. 870–876. https://doi.org/10.1002/er.1397
- Greenman J., Gajda I., Ieropoulos I. Microbial fuel cells (MFC) and microalgae; photo microbial fuel cell (PMFC) as complete recycling machines // Sustainable Energy & Fuels. 2019. Vol. 3. Issue 10. P. 2546–2560. https://doi.org/10.1039/C9SE00354A
- Lu A., Li Y., Jin S., Ding H., Zeng C., Wang X., et al. Microbial fuel cell Equipped with a photocatalytic rutilecoated cathode // Energy & Fuels. 2010. Vol. 24. Issue 2. P. 1184-1190. https://doi.org/10.1021/ef901053j
- Wang S., Yang X., Zhu Yi., Sua Yu., Li C. Solarassisted dual chamber microbial fuel cell with a CuInS2 photocathode. // RSC Advances. 2014. Vol. 4. Issue 45. P. 23790–23796. https://doi.org/10.1039/C4RA02488e
- Kim H.-W., Lee K.-S., Razzaq A., Lee S.H., Grimes C.A., In S.-I. Photocoupled bioanode: A new approach for Improved microbial fuel cell performance // Energy Technology. 2017. Vol. 6. Issue 2. P. 257– 262. https://doi.org/10.1002/ente.201700465
- Kaku N., Yonezawa N., Kodama Yu., Watanabe K. Plant/microbe cooperation for electricity generation in a rice paddy field // Applied Microbiology and Biotechnology. 2008. Vol. 79. Issue 1. P. 43–49. https://doi.org/10.1007/s00253-008-1410-9
- Lee D.-J., Chang J.-S., Lai J.-Y. Microalgaemicrobial fuel cell: A mini review // Bioresource Technology. 2015. Vol. 198. P. 891–895. https://doi.org/10.1016/j.biortech.2015.09.061
- Lobato J., del Campo A.G., Fernández F.J., Cañizares P., Rodrigo M.A. Lagooning microbial fuel cells: A first approach by coupling electricity-producing microorganisms and algae // Applied Energy. 2013. Vol. 110. P. 220–226. https://doi.org/10.1016/j.apenergy.2013.04.010
- Rodrigo M.A., Cañizares P., García H., Linares J.J., Lobato J. Study of the acclimation stage and of the effect of the biodegradability on the performance of a microbial fuel cell // Bioresource Technology. 2009. Vol. 100. Issue 20. P. 4704–4710. https://doi.org/10.1016/j.biortech.2009.04.073
- Wang X., Feng Yu., Liu J., Lee H., Li C., Li N., et al. Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs) // Biosensors and Bioelectronics. 2010. Vol. 25. Issue 12. P. 2639–2643. https://doi.org/10.1016/j.bios.2010.04.036
- Nishio K., Hashimoto K., Watanabe K. Light/electricity conversion by a self-organized photosynthetic biofilm in a single-chamber reactor // Applied Microbiology and Biotechnology. 2010. Vol. 86. Issue 3. P. 957–964. https://doi.org/10.1007/s00253-009-2400-2
- Zou Y., Pisciotta J., Billmyre R.B., Baskakov I.V. Photosynthetic microbial fuel cells with positive light response // Biotechnology and Bioengineering. 2009. Vol. 104. Issue 5. P. 939–946. https://doi.org/10.1002/bit.22466
- Gajda I., Greenman J., Melhuish C., Ieropoulos I. Photosynthetic cathodes for Microbial Fuel Cells // International Journal of Hydrogen Energy. 2013. Vol. 38. Issue 26. P. 11559–11564. https://doi.org/10.1016/j.ijhydene.2013.02.111
- Thorne R., Hu H., Schneider K., Bombelli P., Fisher A., Peter L.M., et al. Porous ceramic anode materials for photo-microbial fuel cells // Journal of Materials Chemistry. 2011. Vol. 21. Issue 44. P. 18055–18060. https://doi.org/10.1039/C1JM13058G
- Lakshmidevi R., Gandhi N.N., Muthukumar K. Bioelectricity and bioactive compound production in an algal-assisted microbial fuel cell with immobilized bioanode // Biomass Conversion and Biorefinery. 2020. https://doi.org/10.1007/s13399-020-00916-6
- Kondaveeti S., Mohanakrishna G., Lee J.-K., Kalia V.C. Methane as a substrate for energy generation using microbial fuel cells // Indian Journal of Microbiology. 2019. Vol. 59. Issue 1. P. 121–124. https://doi.org/10.1007/s12088-018-0765-6
- He Z., Kan J., Mansfeld F., Angenent L.T., Nealson K.H. Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria // Environmental Science & Technology. 2009. Vol. 43. Issue 5. P. 1648–1654. https://doi.org/10.1021/es803084a
- Xu C., Poon K., Choi M.M.F., Wang R. Using live algae at the anode of a microbial fuel cell to generate electricity // Environmental Science and Pollution Research. 2015. Vol. 22. Issue 20. P. 15621– 15635. https://doi.org/10.1007/s11356-015-4744-8
- Bolognesi S., Cecconet D., Callegari A., Capodaglio A.G. Combined microalgal photobioreactor/ microbial fuel cell system: Performance analysis under different process conditions // Environmental Research. 2021. Vol. 12. Issue 7. 110263. https://doi.org/10.1016/j.envres.2020.110263
- Dasgupta C.N., Gilbert J.J., Lindblad P., Heidorn T., Borgvang S.A., Skjånes K., et al. Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production // International Journal of Hydrogen Energy. 2010. Vol. 35. Issue 19. P. 10218–10238. https://doi.org/10.1016/j.ijhydene.2010.06.029
- Dubini A., Ghirardi M.L. Engineering photosynthetic organisms for the production of biohydrogen // Photosynthesis Research. 2015. Vol. 123. Issue 3. P. 241–253. https://doi.org/10.1007/s11120-014-9991-x
- Limongi A.R., Viviano E., de Luca M., Radice R.P., Bianco G., Martelli G. Biohydrogen from microalgae: production and applications // Applied Sciences. 2021. Vol. 11. Issue 4. 1616. https://doi.org/10.3390/app11041616
- Philipps G., Happe T., Hemschemeier A. Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii // Planta. 2012. Vol. 235. Issue 4. P. 729–745. https://doi.org/10.1007/s00425-011-1537-2
- Batyrova K., Gavrisheva A., Ivanova E., Liu J., Tsygankov A. Sustainable hydrogen photoproduction by phosphorus-deprived marine green microalgae Chlorella sp. // International Journal of Molecular Sciences. 2015. Vol. 16. Issue 2. P. 2705–2716. https://doi.org/10.3390/ijms16022705
- Volgusheva A.A., Jokel M., Allahverdiyeva Y., Kukarskikh G.P., Lukashev E.P., Lambreva M.D., et al. Comparative analyses of H2 photoproduction in magnesium- and sulfur-starved Chlamydomonas reinhardtii cultures // Physiologia Plantarum. 2017. Vol. 161. Issue 1. P. 124–137. https://doi.org/10.1111/ppl.12576
- Fakhimi N., Dubini A., Tavakoli O., González-Ballester D. Acetic acid is key for synergetic hydrogen production in Chlamydomonas-bacteria co-cultures // Bioresource Technology. 2019. Vol. 289. 121648. https://doi.org/10.1016/j.biortech.2019.121648
- Fakhimi N., Gonzalez-Ballester D., Fernández E., Galván A., Dubini A. Algae-Bacteria Consortia as a Strategy to Enhance H2 Production // Cells. 2020. Vol. 9. Issue 6. 1353. https://doi.org/10.3390/cells9061353
- Markov S.A., Protasov E.S., Bybin V.A., Eivazova E.R., Stom D.I. Using immobilized cyanobacteria and culture medium contaminated with ammonium for H2 production in a hollow-fiber photobioreactor // International Journal of Hydrogen Energy. 2015. Vol. 40. Issue 14. P. 4752–4757. https://doi.org/10.1016/j.ijhydene.2015.02.053
- Mata T.M., Martins A.A., Caetano N.S. Microalgae for biodiesel production and other applications: a review // Renewable and Sustainable Energy Reviews. 2010. Vol.14. Issue 1. P. 217–232. https://doi.org/10.1016/j.rser.2009.07.020
- Avagyan A.B., Singh B. Biodiesel from Algae. In: Biodiesel: Feedstocks, Technologies, Economics and Barriers. Springer, 2019. P.77–112.
- Farooq A., Khan A.U., Yasar A. Transesterification of oil extracted from different species of algae for biodiesel production // African Journal of Environmental Science and Technology. 2013. Vol. 7. Issue 6. P. 358–364. https://doi.org/10.5897/AJEST12.167
- Mohammadi M., Azizollahi-Aliabadi M. Biodiesel production from microalgae // Journal of Biology and Today's World. 2013. Vol. 2 Issue 2. P. 38–42. https://doi.org/10.15412/J.JBTW.01020204
- Blinová L., Bartošová A., Gerulová K. Cultivation of microalgae (Chlorella vulgaris) for biodiesel production // Research Papers Faculty of Materials Science and Technology Slovak University of Technology. 2015. Vol. 23. Issue 36. P. 87–95. https://doi.org/10.1515/rput-2015-0010
- Chader S, Hacene H., Agathos S.N. Study of hydrogen production by three strains of Chlorella isolated from the soil in the Algerian Sahara // International Journal of Hydrogen Energy. 2009. Vol. 34. Issue 11. P. 4941-4946. https://doi.org/10.1016/j.ijhydene.2008.10.058
- Tsygankov A.A., Hall D.O., Liu J., Rao K.K. An automated helical photo bioreactor incorporating cyanobacteria for continuous hydrogen production. In: Zaborsky O.R. (ed.) Biohydrogen. London: Plenum Press, 1998. P. 431–440. https://doi.org/10.1007/978-0-585-35132-2_52
- Barros A.I., Gonçalves A.L., Simões M., Pires J.C.M. Harvesting techniques applied to microalgae: A review // Renewable and Sustainable Energy Reviews. 2015. Vol. 41. P. 1489–1500. https://doi.org/10.1016/j.rser.2014.09.037
- Atabani A.E., Silitonga A.S., Badruddin I.A., Mahlia T.M.I., Masjuki H.H., Mekhilef S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics // Renewable and Sustainable Energy Reviews. 2012. Vol. 16. Issue 4. P. 2070–2093. https://doi.org/10.1016/j.rser.2012.01.003
Supplementary files
