Phototrophs in alternative energy

Cover Page

Cite item

Full Text

Abstract

Abstract: The role of phototrophs is examined in alternative energy, with the main emphasis on unicellular algae. Particular attention is paid to the use of phototrophs for generating electricity using biofuel cells (plant and enzymatic biofuel cells are discussed). This study focuses on microbial fuel cells (MFC), which, along with electric power, allow obtaining biofuels and biohydrogen. This article explains the factors limiting the MFC power, and ways of overcoming them. For example, it seems promising to develop various photobioreactors in order to reduce the loss of MFC power due to overvoltage. The use of microphototrophs in MFC has led to the development of photosynthetic MFC (or PhotoMFC) through the design of autotrophic photobioreactors with forced illumination. They allow generating oxygen through photosynthesis, both in situ and ex situ, by recirculating oxygen from the photobioreactor to the cathode chamber. Artificial redox mediators can be used here, transferring electrons directly from the non-catalytic cathode to O2, formed as a result of the photosynthetic activity of algae. Biologically catalyzed cathodes have been proven to generate less power than chemical catalysts. It is noted, that the MFC installations with the micro-algae allow utilizing a wider circle of different connections – the components of effluents and withdrawals: organic acids, sugar, alcohols, fats and other substrata. The use of phototrophs for the production of biofuels is of special interest. Several different types of renewable biofuels can be produced from microalgae, the production of which can be combined with wastewater treatment, CO2 capture and production of various compounds.

About the authors

M. S. Konovalo

Irkutsk State University,

Email: mikkonovalov@yandex.ru

E. Yu. Konovalova

Irkutsk State University

Email: elenka_kvasya@list.ru

I. N. Egorova

Siberian Institute of Plant Physiology and Biochemistry SB RAS

Email: egorova@sifibr.irk.ru

G. O. Zhdanova

Irkutsk State University

Email: zhdanova86@ya.ru

D. I. Stom

Irkutsk State University;

Email: stomd@mail.ru

References

  1. Skjånes K., Rebours C., Lindblad P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process // Critical Reviews in Biotechnology. 2013. Vol. 33. Issue 2. P. 172–215. https://doi.org/10.3109/07388551.2012.681625
  2. Vershinin A. Biological functions of carotenoidsdiversity and evolution // Biofactors. 1999. Vol. 10. Issue 2-3. P. 99–104. https://doi.org/10.1002/biof.5520100203
  3. Chisti Y. Biodiesel from microalgae // Biotechnology Advances. 2007. Vol. 25. Issue 3. P. 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  4. Ullah K., Ahmad M., Sharma V.K., Lu P., Harvey A., Zafar M., et al. Algal biomass as a global source of transport fuels: Overview and development perspectives // Progress in Natural Science: Materials International. 2014. Vol. 24. Issue 4. P. 329–339. https://doi.org/10.1016/j.pnsc.2014.06.008
  5. Olivieri G., Salatino P., Marzocchella A. Advances in photobioreactors for intensive microalgal production: Configurations, operating strategies and applications // Journal of Chemical Technology and Biotechnology. 2013. Vol. 89. Issue 2. P. 178–195. https://doi.org/10.1002/jctb.4218
  6. Liu H., Cheng S., Logan B.E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration // Environmental Science & Technology. 2005. Vol. 39. Issue 14. P. 5488–5493. https://doi.org/10.1021/es050316c
  7. Oh S.E., Min B., Logan B.E. Cathode performance as a factor in electricity generation in microbial fuel cells // Environmental Science & Technology. 2004. Vol. 38. Issue 18. P. 4900–4904. https://doi.org/10.1021/es049422p
  8. Pham T.H., Jang J.K., Chang I.S., Kim B.H. Improvement of cathode reaction of a mediator–less microbial fuel cell // Journal of Microbial Biotechnology. 2004. Vol. 14. Issue 2. P. 324–329.
  9. Yagishita T., Sawayama S., Tsukahara K.-I., Ogi T. Effects of intensity of incident light and concentrations of Synechococcus sp. and 2-hydroxy-1,4- naphthoquinone on the current output of photosynthetic electrochemical cell // Solar Energy. 1997. Vol. 61. Issue 5. P. 347–353. https://doi.org/10.1016/S0038-092X(97)00069-8
  10. Juang D.F., Lee C.H., Hsueh S.C. Comparison of electrogenic capabilities of microbial fuel cell with different light power on algae grown cathode // Bioresource Technology. 2012. Vol. 123. P. 23–29. https:// doi.org/10.1016/j.biortech.2012.07.041
  11. Del Campo A.G., Cañizares P., Rodrigo M.A., Fernández F.J., Lobato J. Microbial fuel cell with an algae-assisted cathode: A preliminary assessment // Journal of Power Sources. 2013. Vol. 242. P. 638– 645. https://doi.org/10.1016/j.jpowsour.2013.05.110
  12. Singh S.P., Singh P. Effect of CO2 concentration on algal growth: A review // Renewable and Sustainable Energy Reviews. 2014. Vol. 38. P. 172–179. https://doi.org/10.1016/j.rser.2014.05.043
  13. Fu C.-C., Hung T.-C., Wu W.-T., Wen T.-C., Su C.-H. Current and voltage responses in instant photosynthetic microbial cells with Spirulina platensis // Biochemical Engineering Journal. 2010. Vol. 52. Issues 2- 3. P. 175–180. https://doi.org/10.1016/j.bej.2010.08.004
  14. Meirong M., Xiaoju Sh., Limin C., Zongwu D. The operation of photosynthetic microbial fuel cells powered by Anabaena variabilis. In: Proceedings of 2013 International Conference on Materials for Renewable Energy and Environment. 2013. P. 968–972. https://doi.org/10.1109/ICMREE.2013.6893833
  15. Cao Y., Mu H., Liu W., Zhang R., Guo J., Xian M., Liu H. Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities // Microbial Cell Factories. 2019. Vol. 18. Issue 1. Article number 39. https://doi.org/10.1186/s12934-019-1087-z
  16. Aiyer K.S. Synergistic effects in a microbial fuel cell between co-cultures and a photosynthetic alga Chlorella vulgaris improve performance // Heliyon. 2021. Vol. 7. Issue 1. e05935. https://doi.org/10.1016/j.heliyon.2021.e05935
  17. Mao L., Verwoerd W.S. Genome-scale stoichiometry analysis to elucidate the innate capability of the cyanobacterium Synechocystis for electricity generation // Journal of Industrial Microbiology and Biotechnology. 2013. Vol. 40. Issue 10. P. 1161–1180. https:// doi.org/10.1007/s10295-013-1308-0
  18. Hadiyanto H., Christwardana M., Minasheila T., Wijaya Y.H. Effects of Yeast Concentration and Microalgal Species on Improving the Performance of Microalgal- Microbial Fuel Cells (MMFCs) // International Energy Journal. 2020. Vol. 20. Issue 3. P. 337–344. http://www.rericjournal.ait.ac.th/index.php/reric/article/view/2337
  19. Strik D.P.B.T.B., Hamelers H.V.M., Buisman C.J.N. Solar energy powered microbial fuel cell with a reversible bioelectrode // Environmental Science & Technology. 2010. Vol. 44. Issue 1. P. 532–537. https://doi.org/10.1021/es902435v
  20. Otadi M., Poormohamadian S., Zabihi F., Goharrokhi M. Microbial fuel cell production with alga // World Applied Sciences Journal. 2011. Vol. 14. P. 91–95.
  21. Velasquez-Orta S.B., Curtis T.P., Logan B.E. Energy from algae using microbial fuel cells // Biotechnology and Bioengineering. 2009. Vol. 103. Issue 6. P. 1068–1076. https://doi.org/10.1002/bit.22346
  22. Mahesh S., Tadesse D., Melkamu A. Evaluation of photosynthetic microbial fuel cell for bioelectricity production // Indian Journal of Energy. 2013. Vol. 2. Issue 4. P. 116–120.
  23. Yadav A.K., Panda P., Rout P., Behara S., Patra A.K., Nayak S.K., et al. Entrapment of algae for waste water treatment and bioelectricity generation in microbial fuel cell. In: Proceedings of XVIIth International Conference on Bioencapsulation. 2009. P. 24–26.
  24. Logan B.E. Microbial Fuel Cells. Wiley, 2008. 216 p. https://doi.org/10.1002/9780470258590
  25. Powell E.E., Mapiour M.L., Evitts R.W., Hill G.A. Growth kinetics of Chlorella vulgaris and its use as a cathodic half-cell // Bioresource Technology. 2009. Vol. 100. Issue 1. P. 269–274. https://doi.org/10.1016/j.biortech.2008.05.032
  26. Jiang H.-M., Luo S.-Ju., Shi X.-S., Dai M., Guo R.-B. A system combining microbial fuel cell with photobioreactor for continuous domestic wastewater treatment and bioelectricity generation // Journal of Central South University. 2013. Vol. 20. Issue 2. P. 488–494. https://doi.org/10.1007/s11771-013-1510-2
  27. Pandit S., Ghosh S., Ghangrekar M., Das D. Performance of an anion exchange membrane in association with cathodic parameters in a dual chamber microbial fuel cell // International Journal of Hydrogen Energy. 2012. Vol. 37. Issue 11. P. 9383–9392. https://doi.org/10.1016/j.ijhydene.2012.03.011
  28. Lan J.C.-W., Raman K., Huang Ch.-M., Chang Ch.-M. The impact of monochromatic blue and red LED light upon performance of photo microbial fuel cells (PMFCs) using Chlamydomonas reinhardtii transformation F5 as biocatalyst // Biochemical Engineering Journal. 2013. Vol. 78. P. 39–43. https://doi.org/10.1016/j.bej.2013.02.007
  29. Strik D.P.B.T.B., Hamelers (Bert) H.V.M., Snel J.F.H., Buisman C.J.N. Green electricity production with living plants and bacteria in a fuel cell // International Journal of Energy Research. 2008. Vol. 32. Issue 9. P. 870–876. https://doi.org/10.1002/er.1397
  30. Greenman J., Gajda I., Ieropoulos I. Microbial fuel cells (MFC) and microalgae; photo microbial fuel cell (PMFC) as complete recycling machines // Sustainable Energy & Fuels. 2019. Vol. 3. Issue 10. P. 2546–2560. https://doi.org/10.1039/C9SE00354A
  31. Lu A., Li Y., Jin S., Ding H., Zeng C., Wang X., et al. Microbial fuel cell Equipped with a photocatalytic rutilecoated cathode // Energy & Fuels. 2010. Vol. 24. Issue 2. P. 1184-1190. https://doi.org/10.1021/ef901053j
  32. Wang S., Yang X., Zhu Yi., Sua Yu., Li C. Solarassisted dual chamber microbial fuel cell with a CuInS2 photocathode. // RSC Advances. 2014. Vol. 4. Issue 45. P. 23790–23796. https://doi.org/10.1039/C4RA02488e
  33. Kim H.-W., Lee K.-S., Razzaq A., Lee S.H., Grimes C.A., In S.-I. Photocoupled bioanode: A new approach for Improved microbial fuel cell performance // Energy Technology. 2017. Vol. 6. Issue 2. P. 257– 262. https://doi.org/10.1002/ente.201700465
  34. Kaku N., Yonezawa N., Kodama Yu., Watanabe K. Plant/microbe cooperation for electricity generation in a rice paddy field // Applied Microbiology and Biotechnology. 2008. Vol. 79. Issue 1. P. 43–49. https://doi.org/10.1007/s00253-008-1410-9
  35. Lee D.-J., Chang J.-S., Lai J.-Y. Microalgaemicrobial fuel cell: A mini review // Bioresource Technology. 2015. Vol. 198. P. 891–895. https://doi.org/10.1016/j.biortech.2015.09.061
  36. Lobato J., del Campo A.G., Fernández F.J., Cañizares P., Rodrigo M.A. Lagooning microbial fuel cells: A first approach by coupling electricity-producing microorganisms and algae // Applied Energy. 2013. Vol. 110. P. 220–226. https://doi.org/10.1016/j.apenergy.2013.04.010
  37. Rodrigo M.A., Cañizares P., García H., Linares J.J., Lobato J. Study of the acclimation stage and of the effect of the biodegradability on the performance of a microbial fuel cell // Bioresource Technology. 2009. Vol. 100. Issue 20. P. 4704–4710. https://doi.org/10.1016/j.biortech.2009.04.073
  38. Wang X., Feng Yu., Liu J., Lee H., Li C., Li N., et al. Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs) // Biosensors and Bioelectronics. 2010. Vol. 25. Issue 12. P. 2639–2643. https://doi.org/10.1016/j.bios.2010.04.036
  39. Nishio K., Hashimoto K., Watanabe K. Light/electricity conversion by a self-organized photosynthetic biofilm in a single-chamber reactor // Applied Microbiology and Biotechnology. 2010. Vol. 86. Issue 3. P. 957–964. https://doi.org/10.1007/s00253-009-2400-2
  40. Zou Y., Pisciotta J., Billmyre R.B., Baskakov I.V. Photosynthetic microbial fuel cells with positive light response // Biotechnology and Bioengineering. 2009. Vol. 104. Issue 5. P. 939–946. https://doi.org/10.1002/bit.22466
  41. Gajda I., Greenman J., Melhuish C., Ieropoulos I. Photosynthetic cathodes for Microbial Fuel Cells // International Journal of Hydrogen Energy. 2013. Vol. 38. Issue 26. P. 11559–11564. https://doi.org/10.1016/j.ijhydene.2013.02.111
  42. Thorne R., Hu H., Schneider K., Bombelli P., Fisher A., Peter L.M., et al. Porous ceramic anode materials for photo-microbial fuel cells // Journal of Materials Chemistry. 2011. Vol. 21. Issue 44. P. 18055–18060. https://doi.org/10.1039/C1JM13058G
  43. Lakshmidevi R., Gandhi N.N., Muthukumar K. Bioelectricity and bioactive compound production in an algal-assisted microbial fuel cell with immobilized bioanode // Biomass Conversion and Biorefinery. 2020. https://doi.org/10.1007/s13399-020-00916-6
  44. Kondaveeti S., Mohanakrishna G., Lee J.-K., Kalia V.C. Methane as a substrate for energy generation using microbial fuel cells // Indian Journal of Microbiology. 2019. Vol. 59. Issue 1. P. 121–124. https://doi.org/10.1007/s12088-018-0765-6
  45. He Z., Kan J., Mansfeld F., Angenent L.T., Nealson K.H. Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria // Environmental Science & Technology. 2009. Vol. 43. Issue 5. P. 1648–1654. https://doi.org/10.1021/es803084a
  46. Xu C., Poon K., Choi M.M.F., Wang R. Using live algae at the anode of a microbial fuel cell to generate electricity // Environmental Science and Pollution Research. 2015. Vol. 22. Issue 20. P. 15621– 15635. https://doi.org/10.1007/s11356-015-4744-8
  47. Bolognesi S., Cecconet D., Callegari A., Capodaglio A.G. Combined microalgal photobioreactor/ microbial fuel cell system: Performance analysis under different process conditions // Environmental Research. 2021. Vol. 12. Issue 7. 110263. https://doi.org/10.1016/j.envres.2020.110263
  48. Dasgupta C.N., Gilbert J.J., Lindblad P., Heidorn T., Borgvang S.A., Skjånes K., et al. Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production // International Journal of Hydrogen Energy. 2010. Vol. 35. Issue 19. P. 10218–10238. https://doi.org/10.1016/j.ijhydene.2010.06.029
  49. Dubini A., Ghirardi M.L. Engineering photosynthetic organisms for the production of biohydrogen // Photosynthesis Research. 2015. Vol. 123. Issue 3. P. 241–253. https://doi.org/10.1007/s11120-014-9991-x
  50. Limongi A.R., Viviano E., de Luca M., Radice R.P., Bianco G., Martelli G. Biohydrogen from microalgae: production and applications // Applied Sciences. 2021. Vol. 11. Issue 4. 1616. https://doi.org/10.3390/app11041616
  51. Philipps G., Happe T., Hemschemeier A. Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii // Planta. 2012. Vol. 235. Issue 4. P. 729–745. https://doi.org/10.1007/s00425-011-1537-2
  52. Batyrova K., Gavrisheva A., Ivanova E., Liu J., Tsygankov A. Sustainable hydrogen photoproduction by phosphorus-deprived marine green microalgae Chlorella sp. // International Journal of Molecular Sciences. 2015. Vol. 16. Issue 2. P. 2705–2716. https://doi.org/10.3390/ijms16022705
  53. Volgusheva A.A., Jokel M., Allahverdiyeva Y., Kukarskikh G.P., Lukashev E.P., Lambreva M.D., et al. Comparative analyses of H2 photoproduction in magnesium- and sulfur-starved Chlamydomonas reinhardtii cultures // Physiologia Plantarum. 2017. Vol. 161. Issue 1. P. 124–137. https://doi.org/10.1111/ppl.12576
  54. Fakhimi N., Dubini A., Tavakoli O., González-Ballester D. Acetic acid is key for synergetic hydrogen production in Chlamydomonas-bacteria co-cultures // Bioresource Technology. 2019. Vol. 289. 121648. https://doi.org/10.1016/j.biortech.2019.121648
  55. Fakhimi N., Gonzalez-Ballester D., Fernández E., Galván A., Dubini A. Algae-Bacteria Consortia as a Strategy to Enhance H2 Production // Cells. 2020. Vol. 9. Issue 6. 1353. https://doi.org/10.3390/cells9061353
  56. Markov S.A., Protasov E.S., Bybin V.A., Eivazova E.R., Stom D.I. Using immobilized cyanobacteria and culture medium contaminated with ammonium for H2 production in a hollow-fiber photobioreactor // International Journal of Hydrogen Energy. 2015. Vol. 40. Issue 14. P. 4752–4757. https://doi.org/10.1016/j.ijhydene.2015.02.053
  57. Mata T.M., Martins A.A., Caetano N.S. Microalgae for biodiesel production and other applications: a review // Renewable and Sustainable Energy Reviews. 2010. Vol.14. Issue 1. P. 217–232. https://doi.org/10.1016/j.rser.2009.07.020
  58. Avagyan A.B., Singh B. Biodiesel from Algae. In: Biodiesel: Feedstocks, Technologies, Economics and Barriers. Springer, 2019. P.77–112.
  59. Farooq A., Khan A.U., Yasar A. Transesterification of oil extracted from different species of algae for biodiesel production // African Journal of Environmental Science and Technology. 2013. Vol. 7. Issue 6. P. 358–364. https://doi.org/10.5897/AJEST12.167
  60. Mohammadi M., Azizollahi-Aliabadi M. Biodiesel production from microalgae // Journal of Biology and Today's World. 2013. Vol. 2 Issue 2. P. 38–42. https://doi.org/10.15412/J.JBTW.01020204
  61. Blinová L., Bartošová A., Gerulová K. Cultivation of microalgae (Chlorella vulgaris) for biodiesel production // Research Papers Faculty of Materials Science and Technology Slovak University of Technology. 2015. Vol. 23. Issue 36. P. 87–95. https://doi.org/10.1515/rput-2015-0010
  62. Chader S, Hacene H., Agathos S.N. Study of hydrogen production by three strains of Chlorella isolated from the soil in the Algerian Sahara // International Journal of Hydrogen Energy. 2009. Vol. 34. Issue 11. P. 4941-4946. https://doi.org/10.1016/j.ijhydene.2008.10.058
  63. Tsygankov A.A., Hall D.O., Liu J., Rao K.K. An automated helical photo bioreactor incorporating cyanobacteria for continuous hydrogen production. In: Zaborsky O.R. (ed.) Biohydrogen. London: Plenum Press, 1998. P. 431–440. https://doi.org/10.1007/978-0-585-35132-2_52
  64. Barros A.I., Gonçalves A.L., Simões M., Pires J.C.M. Harvesting techniques applied to microalgae: A review // Renewable and Sustainable Energy Reviews. 2015. Vol. 41. P. 1489–1500. https://doi.org/10.1016/j.rser.2014.09.037
  65. Atabani A.E., Silitonga A.S., Badruddin I.A., Mahlia T.M.I., Masjuki H.H., Mekhilef S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics // Renewable and Sustainable Energy Reviews. 2012. Vol. 16. Issue 4. P. 2070–2093. https://doi.org/10.1016/j.rser.2012.01.003

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».