Protatrans as biomodulators of Candida ethanolica growth

Cover Page

Cite item

Full Text

Abstract

This study was aimed at investigating compounds from a series of protatranes as biostimulants for the growth of the Candida ethanolica yeast. The relevance of the study is associated with the need to determine conditions accelerating the growth of microorganisms in the presence of such highly effective, physiologically active and non-toxic compounds as protatranes. The research object was the Candida ethanolica yeast cultivated on a synthetic nutrient medium containing 1.5% ethanol solution as a carbon source. Protatrans were used at concentrations of 1·10-6 – 1·10-8 wt%. The number of yeast cells was controlled by determining the optical density of yeast suspensions using a KFK-3 Zomax photoelectrocolorimeter at a wavelength of 540 nm and optical path length of 10 mm. The determination of yeast biomass was carried out gravimetrically. The first stage of the work set out to study the accumulation of cells and biomass at various initial yeast cell concentrations. It was revealed that a slight increase in the initial concentration of yeast cells leads to a noticeable shift of the entire S-curve to the left. A comparison of the obtained data sets showed that the investigated protatranes significantly increase the specific growth rate and reduce the generation time during the log phase, provided that this phase accounts for a significant part of the cultivation process. However, the presence of protatranes significantly reduce the specific growth rate and increase the generation period in the log phase, provided that the culture remains in the stationary phase for a significant part of the cultivation time. This is likely to be associated with the positive effect of protatranes on protein synthesis, which is most intense during the log phase. The use of protatranes facilitates the control over the number of cells, amount of biomass, specific growth rate and generation time of the Candida ethanolica yeast depending on the initial cell concentration and, accordingly, the growth phase of the culture.

About the authors

A. S. Kiryukhina

Irkutsk National Research Technical University

Email: alexandra.kirukhina@yandex.ru

T. S. Lozovaya

Irkutsk National Research Technical University

Email: tnike75@mail.ru

E. A. Privalova

Irkutsk National Research Technical University

Email: epriv@istu.edu

V. G. Fedoseeva

A.E. Favorsky Irkutsk Institute of Chemistry SB RAS

Email: mir@irioch.irk.ru

E. N. Oborina

A.E. Favorsky Irkutsk Institute of Chemistry SB RAS

Email: mir@irioch.irk.ru

S. N. Adamovich

A.E. Favorsky Irkutsk Institute of Chemistry SB RAS

Email: mir@irioch.irk.ru

I. B. Rozentsveig

A.E. Favorsky Irkutsk Institute of Chemistry SB RAS; Irkutsk State University

Email: mir@irioch.irk.ru

References

  1. Jones S.W., Karpol A., Friedman S., Maru B.T., Tracy B.P. Recent advances in single cell protein use as a feed ingredient in aquaculture // Current Opinion in Biotechnology. 2020. Vol. 61. P. 189–197. https://doi.org/10.1016/j.copbio.2019.12.026
  2. Reihani S.F.S., Khosravi-Darani K. Influencing factors on single cell protein production by submerged fermentation: A review // Electron Journal. Biotechnology. 2019. Vol. 37. P. 34–40. https://doi.org/10.1016/j.ejbt.2018.11.005
  3. Paalme T., Kevvai K., Vilbaste A., Hälvin K., Nisamedtinov I. Uptake and accumulation of B-group vitamers in Saccharomyces cerevisiae in ethanol-stat fed-batch culture // World Journal of Microbiology and Biotechnology. 2014. Vol. 30. P. 2351–2359. https://doi.org/10.1007/s11274-014-1660-x
  4. Пермякова Л.В. Классификация стимуляторов жизненной активности дрожжей // Техника и технология пищевых производств. 2016. N 3 (42). С. 46–55.
  5. Mirskova A.N., Adamovich S.N., Mirskov R.G., Voronkov M.G. Pharmacologically active salts and ionic liquids based on 2-hydroxyethylamines, arylchalcogenylacetic acids, and essential metals // Russian Chemical Bulletin. 2014. N 9. С. 1869–1883. https://doi.org/10.1007/s11172-014-0679-3
  6. Mirskova A.N., Adamovich S.N., Mirskov R.G., Kolesnikova O.P., Schilde U. Immunoactive ionic liquids based on 2-hydroxyethylamines and 1-R-indol-3-ylsulfanylacetic acids. Crystal and molecular structure of immunodepressant tris-(2-hydroxyethyl)ammonium indol-3-ylsulfanylacetate // Open Chemistry. 2015. Vol. 13. P. 149–155. https://doi.org/10.1515/chem-2015-0018
  7. Kunaszewska M. Complexogenic properties of ethanolamines. III. Kinetics of some reactions of f chromium(III) complexes with triethanolamine in aqueous solutions // Scientific Bulletin of Lodz Technic University. 1976. Vol. 31. Issue 267. 65 p.
  8. Adamovich S.N. New atranes and similar ionic complexes. Synthesis, structure, properties // Applied Organometallic Chemistry. 2019. Vol. 33. Issue 7. P. e4940. https://doi.org/10.1002/aoc.4940
  9. Mirskova A.N., Levkovskaya G.G., Mirskov R.G., Voronkov M.G. Hydroxyalkylammonium salts of organylsulfanyl(sulfonyl)acetic acids – new stimulators of biological processes // Russian Journal of Organic Chemistry. 2008. Vol. 44. Issue 10. P. 1478–1485. https://doi.org/10.1134/S1070428008100126
  10. Молокова К.В., Привалова Е.А., Адамович С.Н., Мирскова А.Н., Мирсков Р.Г. Влияние протонных ионных жидкостей на бродильную активность спиртовых дрожжей // Известия вузов. Прикладная химия и биотехнология. 2014. N 1 (6). С. 70-73.
  11. Khaliullin F.A., Alekhin E.K., Klen E.E., Ryabchinskaya L.A., Kataev V.A., Bogdanova A.Sh. Synthesis and immunotropic activity of (benzimidazolyl-2-thio)acetic acid derivatives containing thietane cycles // Pharmaceutical Chemistry Journal. 2001. Vol. 35. Issue 1. P. 11–14. https://doi.org/10.1002/chin.200137131
  12. Privalova EA, Tiguntseva N.P., Adamovich SN, Mirskov RG, Mirskova AN. Tris(2-hydroxyethyl)ammonium arylchalcogenylacetates, growth stimulants of alcohol yeast Saccharomyces cerevisiae // Russian Chemical Bulletin. 2017. Vol. 66. Issue 7. P. 1320–1324. https://doi.org/10.1007/s11172-017-1893-6
  13. Мирскова А.Н., Адамович С.Н., Мирсков Р.Г. Протатраны – эффективные биостимуляторы для сельского хозяйства, биотехнологии и микробиологии // Химия в интересах устойчивого развития. 2016. Т. 24. N 6. С. 713–729. https://doi.org/10.15372/KhUR20160601
  14. Ugalde U.O., Castrillo J.I. Single cell proteins from fungi and yeasts // Applied Mycology and Biotechnology. 2002. Vol. 2. P. 123–149. https://doi.org/10.1016/S1874-5334(02)80008-9
  15. Пат. № 2061751, Российская Федерация. Штамм дрожжей Candida еthanolica – продуцент биомассы / Р.Н. Бравичева, А.Д. Сатрутдинов, В.М. Благодатская, Н.Б. Градова, В.К. Ерошин, Н.А. Салихова; заявл. 13.04.1992; опубл. 10.06.1996.
  16. Song J.-J., Yuan Y.-H., Liu B., Wang H.-X., Cen T. Isolation and identification of ethanol-utilizing strains and application in low-alcohol cider // Modern Food Science and Technology. 2015. Vоl. 31. P. 254–258. https://doi.org/10.13982/j.mfst.1673-9078.2015.6.040
  17. Бурьян Н.И. Практическая микробиология виноделия. Симферополь: Таврида, 2003. 560 с.
  18. Sonnleitner B., Locher G., Fiechter A. Biomass determination // Journal of Biotechnology. 1992. Vol. 25. Issue 1-2. P. 5–22. https://doi.org/10.1016/0168-1656(92)90107-K
  19. Maier R.M. Bacterial Growth. In: Maier R.M., Pepper I.L., Gerba C.P. Environmental Microbiology, second edition. Elsevier. 2009. P. 38–54. https://doi.org/10.1016/B978-0-12-370519-8.00003-1
  20. Ginovart M., Prats C., Portell X., Silbert M. Analysis of the effect of inoculum characteristics on the first stages of a growing yeast population in beer fermentations by means of an individual-based model // Journal of Industrial Microbiology & Biotechnology. 2011. Vol. 38. P. 153–165. https://doi.org/10.1007/s10295-010-0840-4
  21. Kusch H., Engelmann S., Bode R., Albrecht D., Morschhäuser J., Hecker M. A proteomic view of Candida albicans yeast cell metabolism in exponential and stationary growth phases // International Journal of Medical Microbiology. 2008.Vol. 298. Issue 3-4. P. 291–318. https://doi.org/10.1016/j.ijmm.2007.03.020

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).