Effects of low-temperature treatment on the activity of proteolytic enzymes in various flour types

Capa

Citar

Texto integral

Resumo

This work was aimed at investigating effects of low-temperature processing on the activity of proteolytic enzymes in various flour types. This study allowed an improved understanding of the mechanisms that change biotechnological processes in semi-finished dough products during low-temperature storage. The study of the effect of long-term low-temperature exposure on the activity of proteolytic enzymes in various flour types showed that this parameter depends on the medium pH, as well as on the flour type. During low-temperature storage, the activity of acid proteases tend to decrease by, on average, 10% in both traditional and non-traditional types of flour used for baking. The activity of weakly acidic and weakly alkaline proteases under the influence of low temperatures during storage depends on the flour type. At pH = 5.5, an increase in the duration of low-temperature exposure leads to a decrease in the proteolytic activity of spelt, wheat and buckwheat flour by, on average, 20, 12.5, and 18%, respectively. Conversely, this parameter increases in rye and oat flour by 12 and 28%, respectively. Under the influence of freezing and during low-temperature storage, the activity of weakly alkaline proteases in all studied flour types increases by 15.9%, except for buckwheat, the proteolytic activity of which decreases by 1.5–2 times during storage. It was established that proteolytic enzymes of corn flour exhibit the greatest resistance to long-term storage in a frozen form. Knowledge of the effect of low-temperature processing on the activity of proteolytic enzymes is important for predicting the rheological properties of semi-finished dough products and structural-mechanical and organoleptic characteristics of finished products. In addition, this knowledge facilitates the development of recipes and technological parameters for producing new bakery products based on frozen semi-finished products from traditional and non-traditional flour types.

Sobre autores

S. Kitaevskaya

Kazan National Research Technological University

Email: kitaevskayas@mail.ru

O. Reshetnik

Kazan National Research Technological University

Bibliografia

  1. Герасимова Э.О., Лабутина Н.В. Криогенные технологии в хлебопечении // Известия высших учебных заведений. Пищевая технология. 2019. N 1. С. 6–9.
  2. Китаевская С.В., Романова Н.К., Попова Е.В., Камартдинова Д.Р. Оптимизация рецептурного состава ржано-пшеничного хлеба, выработанного на основе замороженных полуфабрикатов // XXI век: Итоги прошлого и проблемы настоящего плюс. 2019. Т. 8. N 4. С. 171–176.
  3. Козловская А.Э., Лабутина Н.В., Суворов О.А. Влияние хлебопекарных свойств ржаной обдирной муки на теплофизические характеристики ржано-пшеничных полуфабрикатов при замораживании и дефростации // Пищевая промышленность. 2017. N 4. С. 55 - 59.
  4. Feng W., Ma S., Wang X. Quality deterioration and improvement of wheat gluten protein in frozen dough // Grain & Oil Science and Technology. 2020. Vol. 3. Issue 1. P. 29–37. https://doi.org/10.1016/j.gaost.2020.02.001
  5. Wang P., Xu L., Nikoo M., Ocen D., Wu F., Yang N., et al. Effect of frozen storage on the conformational, thermal and microscopic properties of gluten: Comparative studies on gluten-, glutenin- and gliadin-rich fractions // Food Hydrocolloids. 2014. Vol. 35. P. 238–246. https://doi.org/10.1016/j.foodhyd.2013.05.015
  6. Wang P., Chen H., Mohanad B., Xu L., Ning Y., Xu J., et al. Effect of frozen storage on physico-chemistry of wheat gluten proteins: Studies on gluten-, glutenin- and gliadin-rich fractions // Food Hydrocolloids. 2014. Vol. 39. Р. 187–194. https://doi.org/10.1016/j.foodhyd.2014.01.009
  7. Giannou V., Tzia C. Frozen dough bread: Quality and textural behavior during prolonged storage e prediction of final product characteristics // Journal of Food Engineering. 2007. Vol. 79. Issue 3. Р. 929–934. https://doi.org/10.1016/j.jfoodeng.2006.03.013
  8. Gaikwad S., Arya S.S. Influence of frozen storage on quality of multigrain dough, par baked and ready to eat thalipeeth with additives // LWT – Food Science and Technology. 2018. Vol. 96. Р. 350–356. https://doi.org/10.1016/j.lwt.2018.05.057
  9. Ban C., Yoon S., Han J.W., Sang Oh Kim, Han J.S., Lim S., et al. Effects of freezing rate and terminal freezing temperature on frozen croissant dough quality // LWT – Food Science and Technology. 2016. Vol. 73. Р. 219–225. https://doi.org/10.1016/j.lwt.2016.05.045
  10. Jia C., Yang W.-D., Yang Z., Ojobi O.J. Study of the mechanism of improvement due to waxy wheat fl our addition on the quality of frozen dough bread // Journal of Cereal Science. 2017. Vol. 75. Р. 10–16. https://doi.org/10.1016/j.jcs.2017.03.007
  11. Frauenlob J., Moriano M.E., Innerkofler U., D'Amico S., Lucisano M., Schoenlechner R. Effect of physicochemical and empirical rheological wheat flour properties on quality parameters of bread made from pre-fermented frozen dough // Journal of Cereal Science. 2017. Vol. 77. Р. 58–65. https://doi.org/10.1016/j.jcs.2017.06.021
  12. Meziani S., Jasniewski J., Ribotta P.D., Arab-Tehrany E., Muller J.-M., Ghoul M., et al. Influence of yeast and frozen storage on rheological, structural and microbial quality of frozen sweet dough // Journal of Food Engineering. 2012. Vol. 109. P. 538–544. https://doi.org/10.1016/j.jfoodeng.2011.10.026
  13. Китаевская С.В. Исследование резистентности молочнокислых бактерий к низкотемпературной обработке // Вестник Казанского технологического университета. 2014. N 17. N 23. С. 214–217.
  14. Luo W., Sun D.-W., Zhu Z., Wang Q.-J. Improving freeze tolerance of yeast and dough properties for enhancing frozen dough quality – A review of effective methods // Trends in Food Science & Technology. 2018. Vol. 72. P. 25–33. https://doi.org/10.1016/j.tifs.2017.11.017
  15. Белявская И.Г., Лабутина Н.В., Балыхин М.Г., Юркина К.С., Никифорова Д.С., Матвеева И.В. Технологические аспекты криогенных технологий хлебобулочных изделий с использованием Сarbo activatus // Пищевая промышленность. 2019. N 3. С. 40–44.
  16. Wang X., Pei D., Teng Y., Liang J. Effects of enzymes to improve sensory quality of frozen dough bread and analysis on its mechanism // Journal Food Science & Technology. 2018. Vol. 55. Issue 1. Р. 389–398. https://doi.org/10.1007/s13197-017-2950-8
  17. Laaksonen T.J., Roos Y.H. Thermal and dynamic-mechanical properties of frozen wheat doughs with added sucrose, NaCl, ascorbic acid and their mixtures // International Journal of Food Properties. 2001. Vol. 4. Issue 2. P. 201–213. https://doi.org/10.1081/JFP-100105187
  18. Матвеева И.В., Гаццола Д., Страхан С. Биотехнологические решения для замороженных полуфабрикатов и хлебобулочных изделий // Хлебопродукты. 2011. N 9. С. 30–32.
  19. Tao H., Han T., Xiao Y., Wu F., Xu X. Optimization of additives and their combination to improve the quality of refrigerated dough // LWT – Food Science and Technology. 2018. Vol. 89. P. 482–488. https://doi.org/10.1016/j.lwt.2017.11.028
  20. Пучкова Л.И., Поландова Р.Д., Матвеева И.В. Технология хлеба; 4-е изд., перераб. и доп. СПб.: ГИОРД, 2005. 259 с.
  21. Гридина С.Б., Зинкевич Е.П., Владимирцева Т.А., Забусова К.А. Ферментативная активность зерновых культур // Вестник КрасГАУ. 2014. N 8. С. 57–60.
  22. Астахов И.Ю., Курочкин П.П., Игнатов Д.Д. Химический состав и технологические свойства полбяной муки // Инновационная техника и технология. 2015. N 1. С. 59–62.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).