Evolution of views on plant immunity: from Flor’s “gene-for-gene” theory to the “zig-zag model” developed by Jones and Dangl
- Authors: Shafikova T.N.1, Omelichkina Y.V.1
-
Affiliations:
- Siberian Institute of Plant Physiology and Biochemistry SB RAS
- Issue: Vol 10, No 3 (2020)
- Pages: 424-438
- Section: Physico-chemical biology
- URL: https://ogarev-online.ru/2227-2925/article/view/300762
- DOI: https://doi.org/10.21285/2227-2925-2020-10-3-424-438
- ID: 300762
Cite item
Full Text
Abstract
About the authors
T. N. Shafikova
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Email: t-shafikova@yandex.ru
Yu. V. Omelichkina
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Email: omelichkina@yandex.ru
References
- Flor H.H. Inheritance of reaction to rust in flax // Journal of Agricultural Research. 1947. Vol. 74. P. 241–262.
- Janeway C., Medzhitov R. Innate immune recognition // Annual Review of Immunology. 2002. Vol. 20. P. 197–216. https://doi.org/10.1146/annurev.immunol.20.083001.084359
- Лебедев К.А., Понякина И.Д. Иммунология образраспознающих рецепторов. Интегральная иммунология. М.: URSS, 2009. 253 с.
- Zhang J., Zhou J.-M. Plant immunity triggered by microbial molecular signatures // Molecular Plant. 2010. Vol. 3. Issue 5. P. 783–793. https://doi.org/10.1093/mp/ssq035
- Jones J.D.G., Vance R.E., Dangl J.L. Intracellular innate immune surveillance devices in plants and animals // Science. 2016. Vol. 354. Issue 6316. aaf6395. https://doi.org/10.1126/science.aaf6395
- Jones J.D.G., Dangl J.L. The plant immune system // Nature. 2006. Vol. 444. Issue 7117. P. 323–329. https://doi.org/10.1038/nature05286
- Дьяков Ю.Т. Пятьдесят лет теории «ген-на-ген» // Успехи современной биологии. 1996. Т. 116. С. 293–305.
- Staskawicz B., Ausubel E., Baker B., Ellis J.G., Jones J.D. Molecular genetic of plant disease resistance // Science. 1995. Vol. 268. Issue 5211. P. 661–666. https://doi.org/10.1126/science.7732374
- Вавилов Н.И. Иммунитет растений к инфекционным заболеваниям. M.: Наука, 1986. 519 с.
- Albersheim P., Anderson-Proyty A.J. Carbohydrates, proteins, cell surfaces, and the biochemistry of pathogenesis // Annual Review of Plant Physiology and Plant Molecular Biology. 1975. Vol. 26. P. 31–52. https://doi.org/10.1146/annurev.pp.26.060175.000335
- Robatzek S., Saijo Y. Plant immunity from A to Z // Genome Biology. 2008. Vol. 9. Issue 4. Article 304. https://doi.org/10.1186/gb-2008-9-4-304
- Bednarek P. Chemical warfare or modulators of defense responses-the function of secondary metabolites in plant immunity // Current Opinion in Plant Biology. 2012. Vol. 15. Issue 4. P. 407–414. https://doi.org/10.1016/j.pbi.2012.03.002
- Janeway C.A. Autoimmune disease: immunotherapy by peptides? // Nature. 1989. Vol. 341. Issue 6242. P. 482–483. https://doi.org/10.1038/341482a0
- Staal J., Dixelius C. Tracing the ancient origins of plant innate immunity // Trends Plant Science. 2007. Vol. 12. Issue 8. P. 334–342. https://doi.org/10.1016/j.tplants.2007.06.014
- Lotze M.T., Zeh H.J., Rubartelli A., Sparvero L.J., Amoscato A.A., Washburn N.R., et al. The grateful dead: damage associated molecular pattern molecules and reduction/oxidation regulate immunity // Immunological Reviews. 2007. Vol. 220. Issue 1. P. 60–81. https://doi.org/10.1111/j.1600-065X.2007.00579.x
- Couto D., Zipfel C. Regulation of pattern recognition receptor signalling in plants // Nature Reviews Immunology. 2016. Vol. 16. P. 537–552. https://doi.org/10.1038/nri.2016.77
- Vance R.E., Isberg R.R., Portnoy D.A. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system // Cell Host Microbe. 2009. Vol. 6. Issue 1. P. 10–21. https://doi.org/10.1016/j.chom.2009.06.007
- Durrant W.E., Dong X. Systemic acquired resistance // Annual Review of Phytopathology. 2004. Vol. 42. P. 185–209. https://doi.org/10.1146/annurev.phyto.42.040803.140421
- Slaughter A., Daniel X., Flors V., Luna E., Hohn B., Mauch-Mani B. Descendants of primed Arabidopsis plants exhibit enhanced resistance to biotic stress // Plant Physiology. 2012. Vol. 158. P. 835–843. https://doi.org/10.1104/pp.111.191593
- Омеличкина Ю.В., Шафикова Т.Н., Алексеенко А.Л., Маркова Ю.А., Еникеев А.Г., Рихванов Е.Г. Ответные реакции растений и культуры клеток табака на заражение Clavibacter michiganensis ssp. sepedonicus // В мире научных открытий. 2010. N. 1-4. С. 89–94.
- Маркова Ю.А., Савилов Е.Д., Анганова Е.В., Войников В.К. Природная среда как потенциальное местообитание патогенных и условно-патогенных энтеробактерий. Иркутск: Изд-во РИО ИГМАПО, 2013. 144 с.
- Dow M., Newman M.A., von Roepenack E. The induction and modulation of plant defense response by bacterial lipopolysaccharides // Annual Review of Phytopathology. 2000. Vol. 38. P. 241–261. https://doi.org/10.1146/annurev.phyto.38.1.241
- Nicaise V., Roux M., Zipfel C. Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm // Plant physiology. 2009. Vol. 150. P. 1638–1647. https://doi.org/10.1104/pp.109.139709
- Sakamoto T., Deguchi M., Brustolini O., Santos A., Silva F., Fontes E. The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense // BMC Plant Biology. 2012. Vol. 12. P. 229. https://doi.org/10.1186/1471-2229-12-229
- Li L., Yu Y., Zhou Z., Zhou J.M. Plant patternrecognition receptors controlling innate immunity // Science China Life Sciences. 2016. Vol. 59. P. 878–888. https://doi.org/10.1007/s11427-016-0115-2
- Shiu S.H., Bleecker A.B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases // Proceedings of the National Academy of Sciences USA. 2001. Vol. 98. Issue 19. P. 10763–10768. https://doi.org/10.1073/pnas.181141598
- Kopp E., Medzhitov R. Recognition of microbial infection by Toll-like receptors // Current Opinion in Immunology. 2003. Vol. 15. Issue 4. P. 396–401. https://doi.org/10.1016/S0952-7915(03)00080-3
- Kawai T., Akira S. The role of patternrecognition receptors in innate immunity: update on Toll-like receptors // Nature Immunology. 2010. Vol. 11. P. 373–384. https://doi.org/10.1038/ni.1863
- Dardick C., Ronald P. Plant and animal pathogen recognition receptors signal through non-RD kinases // PLoS Pathogens. 2006. Vol. 2. Issue 1. P. 0014–0028. https://doi.org/10.1371/journal.ppat.0020002
- Lee S.-W., Han S.-W., Sririyanum M., Park C.-J., Seo Y.-S., Ronald P.C. A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity // Science. 2009. Vol. 326. Issue 5954. P. 850–853. https://doi.org/10.1126/science.1173438
- Kunze G., Zipfel C., Robatzek S., Niehaus K., Boller T., Felix G. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants // Plant Cell. 2004. Vol. 16. P. 3496–3507. https://doi.org/10.1105/tpc.104.026765
- Miya A., Albert P., Shinya T., Desaki Y., Ichimura K., Shirasu K., et al. CERK1, a LysM receptor kinase, is essential for chitin elicitor signalling in Arabidopsis // Proceedings of the National Academy of Sciences USA. 2007. Vol. 104. Issue 49. P. 19613–19618. https://doi.org/10.1073/pnas.0705147104
- Liu B., Li J.-F., Ao Y., Qu J., Li Z., Su J., et al. Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity // Plant Cell. 2012. Vol. 24. P. 3406–3419. https://doi.org/10.1105/tpc.112.102475
- Ranf S., Gisch N., Schäffer M., Illig T., Westphal L., Knirel Y.A., et al. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana // Nature Immunology. 2015. Vol. 16. Issue 4. P. 426–433. https://doi.org/10.1038/ni.3124
- Brutus A., Sicilia F., Macone A., Cervone F., De Lorenzo G. A domain swap approach reveals a role of the plant wallassociated kinase 1 (WAK1) as a receptor of oligogalacturonides // Proceedings of the National Academy of Sciences USA. 2010. Vol. 107. Issue 20. P. 9452–9457. https://doi.org/10.1073/pnas.1000675107
- Forrest R.S., Lyon G.D. Substrate degradation patterns of polygalacturonic acid lyase from Erwinia carotovora and Bacillus polymyxa and release of phytoalexin-eliciting oligosaccharides from potato cell walls // Journal of Experimental Botany. 1990. Vol. 41. Issue 4. P. 481–488. https://doi.org/10.1093/jxb/41.4.481
- Anderson C.M., Wagner T.A., Perret M., He Z.-H., He D., Kohorn B.D. WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix // Plant Molecular Biology. 2001. Vol. 47. P. 197–206. https://doi.org/10.1023/A:1010691701578
- Schulze B., Mentzel T., Jehle A.K., Mueller K., Beeler S., Boler T., et al. Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1 // Journal of Biological Chemistry. 2010. Vol. 285. Issue 13. P. 9444–9451. https://doi.org/10.1074/jbc.M109.096842
- Sun Y., Li L., Macho A.P., Han Z., Hu Z., Zipfel C., et al. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex // Science. 2013. Vol. 342. Issue 6158. P. 624–628. https://doi.org/10.1126/science.1243825
- Wang Y., Li Z., Liu D., Xu J., Wei X., Yan L., et al. Assessment of BAK1 activity in different plant receptor-like kinase complexes by quantitative profling of phosphorylation patterns // Journal of Proteomics. 2014. Vol. 108. P. 484–493. https://doi.org/10.1016/j.jprot.2014.06.009
- Shan L., He P., Li J., Heese A., Peck S.C., Nürnberger T., et al. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity // Cell Host Microbe. 2008. Vol. 4. Issue 1. P. 17–27. https://doi.org/10.1016/j.chom.2008.05.017
- Belkhadir Y., Jaillais Y., Epple P., Balsemao-Pires E., Dangl J.L., Chory J. Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns // Proceedings of the National Academy of Sciences of the USA. 2012. Vol. 109. Issue 1. P. 297–302. https://doi.org/10.1073/pnas.1112840108
- Liu J., Ding P., Sun T., Nitta Y., Dong O., Huang X., et al. Heterotrimeric G proteins serve as a converging point in plant defense signaling activated by multiple receptor-like kinases // Plant Physiology. 2013. Vol. 161. P. 2146–2158. https://doi.org/10.1104/pp.112.212431
- Ren D., Liu Y., Yang K.-Y., Han L., Mao G., Glazebrook J, et al. A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis // Proceedings of the National Academy of Sciences of the USA. 2008. Vol. 105. Issue 14. P. 5638–5643. https://doi.org/10.1073/pnas.0711301105
- Bi G., Zhou J.-M. MAP kinase signaling pathways: a hub of plantmicrobe interactions // Cell Host and Microbe. 2017. Vol. 21. Issue 3. P. 270–273. https://doi.org/10.1016/j.chom.2017.02.004
- Pandey S.P., Somssich I.E. The role of WRKY transcription factors in plant immunity // Plant Physiology. 2009. Vol. 150. Issue 4. P. 1648–1655. https://doi.org/10.1104/pp.109.138990
- Ishihama N., Yoshioka H. Post-translational regulation of WRKY transcription factors in plant immunity // Current Opinion in Plant Biology. 2012. Vol. 15. Issue 4. P. 431–437. https://doi.org/10.1016/j.pbi.2012.02.003
- Adachi H., Nakano T., Miyagawa N., Ishihama N., Yoshioka M., Katou Y., et al. WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH oxidase in Nicotiana benthamiana // Plant Cell. 2015. Vol. 27. Issue 9. P. 2645–2663. https://doi.org/10.1105/tpc.15.00213
- Dong J., Chen C., Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response // Plant Molecular Biology. 2003. Vol. 51. P. 21–37. https://doi.org/10.1023/A:1020780022549
- Таланова В.В., Титов А.Ф., Топчиева Л.В., Малышева И.Е., Венжик Ю.В., Фролова С.А. Экспрессия генов транскрипционного фактора WRKY и стрессовых белков у растений пшеницы при холодовом закаливании и действии АБК // Физиология растений. 2009. T. 56. N 5. C. 776–782. https://doi.org/10.1134/S102144370
- Wei W., Zhang Y., Han L., Guan Z., Chai T. A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco // Plant Cell Reports. 2008. Vol. 27. P. 795–803. https://doi.org/10.1007/s00299-007-0499-0
- Tsuda K., Sato M., Glazebrook J., Cohen J.D., Katagiri F. Interplay between MAMP triggered and SA-mediated defense responses // The Plant Journal. 2008. Vol. 53. P. 763–775. https://doi.org/10.1111/j.1365-313X.2007.03369.x
- Withers J., Dong X. Post-translational regulation of plant immunity // Current Opinion in Plant Biology. 2017. Vol. 38. P. 124–132. https://doi.org/10.1016/j.pbi.2017.05.004
- Segonzac C., Macho A.P., Sanmartin M., Ntoukakis V., Sanchez-Serrano J.J., Zipfel C. Negative control of BAK1 by protein phosphatase 2A during plant innate immunity // The EMBO Journal. 2014. Vol. 33. Issue 18. P. 2069–2079. https://doi.org/10.15252/embj.201488698
- Couto D., Niebergall R., Liang X., Bucherl C.A., Sklenar J., Macho A.P., et al. The Arabidopsis protein phosphatase PP2C38 negatively regulates the central immune kinase BIK1 // PLoS Pathogens. 2016. Vol. 12. e1005811. https://doi.org/10.1371/journal.ppat.1005811
- Zhou J., Lu D., Xu G., Finlayson S.A., He P., Shan L. The dominant negative ARM domain uncovers multiple functions of PUB13 in Arabidopsis immunity, flowering, and senescence // Journal of Experimental Botany. 2015. Vol. 66. Issue 11. P. 3353–3366. https://doi.org/10.1093/jxb/erv148
- Smith J.M., Salamango D.J., Leslie M.E., Collins C.A., Heese A. Sensitivity to Flg22 is modulated by ligand-induced degradation and de novo synthesis of the endogenous flagellin-receptor FLAGELLIN-SENSING2 // Plant Physiology. 2014. Vol. 164. P. 440–454. https://doi.org/10.1104/pp.113.229179
- Katagiri F., Tsuda K. Understanding the plant immune system // Molecular Plant-Microbe Interactions. 2010. Vol. 23. Issue 12. P. 1531–1536. https://doi.org/10.1094/MPMI-04-10-0099
- Zhang J., Shao F., Cui H., Chen L., Li H., Zou Y., et al. A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants // Cell Host Microbe. 2007. Vol. 1. Issue 3. P. 175–185. https://doi.org/10.1016/j.chom.2007.03.006
- Macho A.P., Schwessinger B., Ntoukakis V., Brutus A., Segonzac C., Roy S., et al. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation // Science. 2014. Vol. 343. Issue 6178. P. 1509–1512. https://doi.org/10.1126/science.1248849
- Zeng L., Velasquez A.C., Munkvold K.R., Zhang J., Martin G.B. A tomato LysM receptor-like kinase promotes immunity and its kinase activity is inhibited by AvrPtoB // The Plant Journal. 2012. Vol. 69. P. 92–103. https://doi.org/10.1111/j.1365-313X.2011.04773.x
- Hemetsberger C., Herrberger C., Zechmann B., Hillmer M., Doehlemann G. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity // PLOS Pathogens. 2012. Vol. 8. e1002684. https://doi.org/10.1371/journal.ppat.1002684
- Lukasik E., Takken F.L. STANDing strong, resistance proteins instigators of plant defence // Current Opinion in Plant Biology. 2009. Vol. 12. Issue 4. P. 427–436. https://doi.org/10.1016/j.pbi.2009.03.001
- Kadota Y., Shirasu K., Guerois R. NLR sensors meet at the SGT1-HSP90 crossroad // Trends in Biochemical Sciences. 2010. Vol. 35. Issue 4. P. 199–207. https://doi.org/10.1016/j.tibs.2009.12.005
- Dangl J.L., Jones J.D.G. Plant pathogens and integrated defence responses to infection // Nature. 2001. Vol. 411. P. 826–833. https://doi.org/10.1038/35081161
- Wilton M., Subramaniam R., Elmore J., Felsensteiner C., Coaker G., Desveaux D. The type III effector HopF2 Pto targets Arabidopsis RIN4 protein to promote Pseudomonas syringae virulence. Proceedings of the National Academy of Sciences of the USA. 2010. Vol. 107. Issue 5. P. 2349–2354. https://doi.org/10.1073/pnas.0904739107
- Van der Hoorn R.A., Kamoun S. From guard to decoy: a new model for perception of plant pathogen effectors // Plant Cell. 2008. Vol. 20. P. 2009–2017. https://doi.org/10.1105/tpc.108.060194
- Gutierrez J.R., Balmuth A.L., Ntoukakis V., Mucyn T.S., Gimenez-Ibanez S., Jones A., et al. Prf immune complexes of tomato are oligomeric and contain multiple Pto-like kinases that diversify effector recognition // The Plant Journal. 2009. Vol. 61. Issue 3. P. 507–518. https://doi.org/10.1111/j.1365-313X.2009.04078.x
- Collier S.M., Moffett P. NB-LRRs work a “bait and switch” on pathogens // Trends in Plant Sciences. 2009. Vol. 14. Issue 10. P. 521–529. https://doi.org/10.1016/j.tplants.2009.08.001
- Wirthmueller L., Zhang Y., Jones J.D., Parker J.E. Nuclear accumulation of the Arabidopsis immune receptor RPS4 is necessary for triggering EDS1-dependent defense // Current Biology. 2007. Vol. 17. Issue 23. P. 2023–2029. https://doi.org/10.1016/j.cub.2007.10.042
- Bai S., Liu J., Chang C., Zhang L., Maekawa T., Wang Q., et al. Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance // PLoS Pathogens. 2012. Vol. 8. Issue 6. e1002752. https://doi.org/10.1371/journal.ppat.1002752
- Sarris P.F., Duxbury Z., Huh S.U., Ma Y., Segonzac C., Sklenar J., et al. A plant immune receptor detects pathogen effectors that target WRKY transcription factors // Cell. 2015. Vol.161. Issue 5. P. 1089–1100. https://doi.org/10.1016/j.cell.2015.04.024
- Mur L.A., Kenton P., Lloyd A.J., Ougham H., Prats E. The hypersensitive response: the centenary is upon us but how much do we know? // Journal of Experemental Botany. 2008. Vol. 59. Issue 3. P. 501–520. https://doi.org/10.1093/jxb/erm239
- Jwa N.-S., Hwang B.K. Convergent evolution of pathogen effectors toward reactive oxygen species signaling networks in plants front // Frontiers in Plant Science. 2017. Vol. 8. P.1687. https://doi.org/10.3389/fpls.2017.01687
- Le Roux C., Huet G., Jauneau A., Camborde L., Tremousaygue D., Kraut A., et al. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity // Cell. 2015. Vol. 161. Issue 5. P. 1074–1088. https://doi.org/10.1016/j.cell.2015.04.025
Supplementary files
