Evolution of views on plant immunity: from Flor’s “gene-for-gene” theory to the “zig-zag model” developed by Jones and Dangl

Cover Page

Cite item

Full Text

Abstract

The study of plant defence mechanisms in response to pathogens in the mid-20th century resulted in Harold Flor’s gene-for-gene interaction hypothesis, which became recognised as central to the study of phytoimmunity. According to this theory, the outcome of interactions in plant – pathogen phytopathosystems – i.e. compatibility or incompatibility – is controlled genetically in interacting organisms and determined by the presence of specific genes in both pathogen and plant: resistance genes in the plant and avirulence genes in pathogen. The latest achievements in phytoimmunology, obtained with the help of modern molecular biology and bioinformatics methods, have made a significant contribution to the classical understanding of plant immunity and provided grounds for a modern concept of phytoimmunity consisting in the “zig-zag model” developed by Jonathan Jones and Jefferey Dangl. Plant immunity is currently understood as being determined by an innate multi-layer immune system involving various structures and mechanisms of specific and non-specific immunity. Recognition by plant membrane receptors of conservative molecular patterns associated with microorganisms, as well as molecules produced during cell wall disruption by pathogen hydrolytic enzymes forms a basic non-specific immune response in the plant. Detection of pathogen effector molecules by plant intra-cellular receptors triggers a specific effector-triggered immunity, resulting in the development of the hypersensitive response, systemic resistance and immune memory of the plant. Virulence factors and pathogen attack strategies on the one hand, and mechanisms of plant immune protection on the other, are the result of one form of constant co-evolution, often termed an “evolutionary arms race”. This paper discusses the main principles of Flor's classical “gene-for-gene interaction” theory as well as the molecular-genetic processes of plant innate immunity, their mechanisms and participants in light of contemporary achievements in phytoimmunology.

About the authors

T. N. Shafikova

Siberian Institute of Plant Physiology and Biochemistry SB RAS

Email: t-shafikova@yandex.ru

Yu. V. Omelichkina

Siberian Institute of Plant Physiology and Biochemistry SB RAS

Email: omelichkina@yandex.ru

References

  1. Flor H.H. Inheritance of reaction to rust in flax // Journal of Agricultural Research. 1947. Vol. 74. P. 241–262.
  2. Janeway C., Medzhitov R. Innate immune recognition // Annual Review of Immunology. 2002. Vol. 20. P. 197–216. https://doi.org/10.1146/annurev.immunol.20.083001.084359
  3. Лебедев К.А., Понякина И.Д. Иммунология образраспознающих рецепторов. Интегральная иммунология. М.: URSS, 2009. 253 с.
  4. Zhang J., Zhou J.-M. Plant immunity triggered by microbial molecular signatures // Molecular Plant. 2010. Vol. 3. Issue 5. P. 783–793. https://doi.org/10.1093/mp/ssq035
  5. Jones J.D.G., Vance R.E., Dangl J.L. Intracellular innate immune surveillance devices in plants and animals // Science. 2016. Vol. 354. Issue 6316. aaf6395. https://doi.org/10.1126/science.aaf6395
  6. Jones J.D.G., Dangl J.L. The plant immune system // Nature. 2006. Vol. 444. Issue 7117. P. 323–329. https://doi.org/10.1038/nature05286
  7. Дьяков Ю.Т. Пятьдесят лет теории «ген-на-ген» // Успехи современной биологии. 1996. Т. 116. С. 293–305.
  8. Staskawicz B., Ausubel E., Baker B., Ellis J.G., Jones J.D. Molecular genetic of plant disease resistance // Science. 1995. Vol. 268. Issue 5211. P. 661–666. https://doi.org/10.1126/science.7732374
  9. Вавилов Н.И. Иммунитет растений к инфекционным заболеваниям. M.: Наука, 1986. 519 с.
  10. Albersheim P., Anderson-Proyty A.J. Carbohydrates, proteins, cell surfaces, and the biochemistry of pathogenesis // Annual Review of Plant Physiology and Plant Molecular Biology. 1975. Vol. 26. P. 31–52. https://doi.org/10.1146/annurev.pp.26.060175.000335
  11. Robatzek S., Saijo Y. Plant immunity from A to Z // Genome Biology. 2008. Vol. 9. Issue 4. Article 304. https://doi.org/10.1186/gb-2008-9-4-304
  12. Bednarek P. Chemical warfare or modulators of defense responses-the function of secondary metabolites in plant immunity // Current Opinion in Plant Biology. 2012. Vol. 15. Issue 4. P. 407–414. https://doi.org/10.1016/j.pbi.2012.03.002
  13. Janeway C.A. Autoimmune disease: immunotherapy by peptides? // Nature. 1989. Vol. 341. Issue 6242. P. 482–483. https://doi.org/10.1038/341482a0
  14. Staal J., Dixelius C. Tracing the ancient origins of plant innate immunity // Trends Plant Science. 2007. Vol. 12. Issue 8. P. 334–342. https://doi.org/10.1016/j.tplants.2007.06.014
  15. Lotze M.T., Zeh H.J., Rubartelli A., Sparvero L.J., Amoscato A.A., Washburn N.R., et al. The grateful dead: damage associated molecular pattern molecules and reduction/oxidation regulate immunity // Immunological Reviews. 2007. Vol. 220. Issue 1. P. 60–81. https://doi.org/10.1111/j.1600-065X.2007.00579.x
  16. Couto D., Zipfel C. Regulation of pattern recognition receptor signalling in plants // Nature Reviews Immunology. 2016. Vol. 16. P. 537–552. https://doi.org/10.1038/nri.2016.77
  17. Vance R.E., Isberg R.R., Portnoy D.A. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system // Cell Host Microbe. 2009. Vol. 6. Issue 1. P. 10–21. https://doi.org/10.1016/j.chom.2009.06.007
  18. Durrant W.E., Dong X. Systemic acquired resistance // Annual Review of Phytopathology. 2004. Vol. 42. P. 185–209. https://doi.org/10.1146/annurev.phyto.42.040803.140421
  19. Slaughter A., Daniel X., Flors V., Luna E., Hohn B., Mauch-Mani B. Descendants of primed Arabidopsis plants exhibit enhanced resistance to biotic stress // Plant Physiology. 2012. Vol. 158. P. 835–843. https://doi.org/10.1104/pp.111.191593
  20. Омеличкина Ю.В., Шафикова Т.Н., Алексеенко А.Л., Маркова Ю.А., Еникеев А.Г., Рихванов Е.Г. Ответные реакции растений и культуры клеток табака на заражение Clavibacter michiganensis ssp. sepedonicus // В мире научных открытий. 2010. N. 1-4. С. 89–94.
  21. Маркова Ю.А., Савилов Е.Д., Анганова Е.В., Войников В.К. Природная среда как потенциальное местообитание патогенных и условно-патогенных энтеробактерий. Иркутск: Изд-во РИО ИГМАПО, 2013. 144 с.
  22. Dow M., Newman M.A., von Roepenack E. The induction and modulation of plant defense response by bacterial lipopolysaccharides // Annual Review of Phytopathology. 2000. Vol. 38. P. 241–261. https://doi.org/10.1146/annurev.phyto.38.1.241
  23. Nicaise V., Roux M., Zipfel C. Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm // Plant physiology. 2009. Vol. 150. P. 1638–1647. https://doi.org/10.1104/pp.109.139709
  24. Sakamoto T., Deguchi M., Brustolini O., Santos A., Silva F., Fontes E. The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense // BMC Plant Biology. 2012. Vol. 12. P. 229. https://doi.org/10.1186/1471-2229-12-229
  25. Li L., Yu Y., Zhou Z., Zhou J.M. Plant patternrecognition receptors controlling innate immunity // Science China Life Sciences. 2016. Vol. 59. P. 878–888. https://doi.org/10.1007/s11427-016-0115-2
  26. Shiu S.H., Bleecker A.B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases // Proceedings of the National Academy of Sciences USA. 2001. Vol. 98. Issue 19. P. 10763–10768. https://doi.org/10.1073/pnas.181141598
  27. Kopp E., Medzhitov R. Recognition of microbial infection by Toll-like receptors // Current Opinion in Immunology. 2003. Vol. 15. Issue 4. P. 396–401. https://doi.org/10.1016/S0952-7915(03)00080-3
  28. Kawai T., Akira S. The role of patternrecognition receptors in innate immunity: update on Toll-like receptors // Nature Immunology. 2010. Vol. 11. P. 373–384. https://doi.org/10.1038/ni.1863
  29. Dardick C., Ronald P. Plant and animal pathogen recognition receptors signal through non-RD kinases // PLoS Pathogens. 2006. Vol. 2. Issue 1. P. 0014–0028. https://doi.org/10.1371/journal.ppat.0020002
  30. Lee S.-W., Han S.-W., Sririyanum M., Park C.-J., Seo Y.-S., Ronald P.C. A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity // Science. 2009. Vol. 326. Issue 5954. P. 850–853. https://doi.org/10.1126/science.1173438
  31. Kunze G., Zipfel C., Robatzek S., Niehaus K., Boller T., Felix G. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants // Plant Cell. 2004. Vol. 16. P. 3496–3507. https://doi.org/10.1105/tpc.104.026765
  32. Miya A., Albert P., Shinya T., Desaki Y., Ichimura K., Shirasu K., et al. CERK1, a LysM receptor kinase, is essential for chitin elicitor signalling in Arabidopsis // Proceedings of the National Academy of Sciences USA. 2007. Vol. 104. Issue 49. P. 19613–19618. https://doi.org/10.1073/pnas.0705147104
  33. Liu B., Li J.-F., Ao Y., Qu J., Li Z., Su J., et al. Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity // Plant Cell. 2012. Vol. 24. P. 3406–3419. https://doi.org/10.1105/tpc.112.102475
  34. Ranf S., Gisch N., Schäffer M., Illig T., Westphal L., Knirel Y.A., et al. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana // Nature Immunology. 2015. Vol. 16. Issue 4. P. 426–433. https://doi.org/10.1038/ni.3124
  35. Brutus A., Sicilia F., Macone A., Cervone F., De Lorenzo G. A domain swap approach reveals a role of the plant wallassociated kinase 1 (WAK1) as a receptor of oligogalacturonides // Proceedings of the National Academy of Sciences USA. 2010. Vol. 107. Issue 20. P. 9452–9457. https://doi.org/10.1073/pnas.1000675107
  36. Forrest R.S., Lyon G.D. Substrate degradation patterns of polygalacturonic acid lyase from Erwinia carotovora and Bacillus polymyxa and release of phytoalexin-eliciting oligosaccharides from potato cell walls // Journal of Experimental Botany. 1990. Vol. 41. Issue 4. P. 481–488. https://doi.org/10.1093/jxb/41.4.481
  37. Anderson C.M., Wagner T.A., Perret M., He Z.-H., He D., Kohorn B.D. WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix // Plant Molecular Biology. 2001. Vol. 47. P. 197–206. https://doi.org/10.1023/A:1010691701578
  38. Schulze B., Mentzel T., Jehle A.K., Mueller K., Beeler S., Boler T., et al. Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1 // Journal of Biological Chemistry. 2010. Vol. 285. Issue 13. P. 9444–9451. https://doi.org/10.1074/jbc.M109.096842
  39. Sun Y., Li L., Macho A.P., Han Z., Hu Z., Zipfel C., et al. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex // Science. 2013. Vol. 342. Issue 6158. P. 624–628. https://doi.org/10.1126/science.1243825
  40. Wang Y., Li Z., Liu D., Xu J., Wei X., Yan L., et al. Assessment of BAK1 activity in different plant receptor-like kinase complexes by quantitative profling of phosphorylation patterns // Journal of Proteomics. 2014. Vol. 108. P. 484–493. https://doi.org/10.1016/j.jprot.2014.06.009
  41. Shan L., He P., Li J., Heese A., Peck S.C., Nürnberger T., et al. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity // Cell Host Microbe. 2008. Vol. 4. Issue 1. P. 17–27. https://doi.org/10.1016/j.chom.2008.05.017
  42. Belkhadir Y., Jaillais Y., Epple P., Balsemao-Pires E., Dangl J.L., Chory J. Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns // Proceedings of the National Academy of Sciences of the USA. 2012. Vol. 109. Issue 1. P. 297–302. https://doi.org/10.1073/pnas.1112840108
  43. Liu J., Ding P., Sun T., Nitta Y., Dong O., Huang X., et al. Heterotrimeric G proteins serve as a converging point in plant defense signaling activated by multiple receptor-like kinases // Plant Physiology. 2013. Vol. 161. P. 2146–2158. https://doi.org/10.1104/pp.112.212431
  44. Ren D., Liu Y., Yang K.-Y., Han L., Mao G., Glazebrook J, et al. A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis // Proceedings of the National Academy of Sciences of the USA. 2008. Vol. 105. Issue 14. P. 5638–5643. https://doi.org/10.1073/pnas.0711301105
  45. Bi G., Zhou J.-M. MAP kinase signaling pathways: a hub of plantmicrobe interactions // Cell Host and Microbe. 2017. Vol. 21. Issue 3. P. 270–273. https://doi.org/10.1016/j.chom.2017.02.004
  46. Pandey S.P., Somssich I.E. The role of WRKY transcription factors in plant immunity // Plant Physiology. 2009. Vol. 150. Issue 4. P. 1648–1655. https://doi.org/10.1104/pp.109.138990
  47. Ishihama N., Yoshioka H. Post-translational regulation of WRKY transcription factors in plant immunity // Current Opinion in Plant Biology. 2012. Vol. 15. Issue 4. P. 431–437. https://doi.org/10.1016/j.pbi.2012.02.003
  48. Adachi H., Nakano T., Miyagawa N., Ishihama N., Yoshioka M., Katou Y., et al. WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH oxidase in Nicotiana benthamiana // Plant Cell. 2015. Vol. 27. Issue 9. P. 2645–2663. https://doi.org/10.1105/tpc.15.00213
  49. Dong J., Chen C., Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response // Plant Molecular Biology. 2003. Vol. 51. P. 21–37. https://doi.org/10.1023/A:1020780022549
  50. Таланова В.В., Титов А.Ф., Топчиева Л.В., Малышева И.Е., Венжик Ю.В., Фролова С.А. Экспрессия генов транскрипционного фактора WRKY и стрессовых белков у растений пшеницы при холодовом закаливании и действии АБК // Физиология растений. 2009. T. 56. N 5. C. 776–782. https://doi.org/10.1134/S102144370
  51. Wei W., Zhang Y., Han L., Guan Z., Chai T. A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco // Plant Cell Reports. 2008. Vol. 27. P. 795–803. https://doi.org/10.1007/s00299-007-0499-0
  52. Tsuda K., Sato M., Glazebrook J., Cohen J.D., Katagiri F. Interplay between MAMP triggered and SA-mediated defense responses // The Plant Journal. 2008. Vol. 53. P. 763–775. https://doi.org/10.1111/j.1365-313X.2007.03369.x
  53. Withers J., Dong X. Post-translational regulation of plant immunity // Current Opinion in Plant Biology. 2017. Vol. 38. P. 124–132. https://doi.org/10.1016/j.pbi.2017.05.004
  54. Segonzac C., Macho A.P., Sanmartin M., Ntoukakis V., Sanchez-Serrano J.J., Zipfel C. Negative control of BAK1 by protein phosphatase 2A during plant innate immunity // The EMBO Journal. 2014. Vol. 33. Issue 18. P. 2069–2079. https://doi.org/10.15252/embj.201488698
  55. Couto D., Niebergall R., Liang X., Bucherl C.A., Sklenar J., Macho A.P., et al. The Arabidopsis protein phosphatase PP2C38 negatively regulates the central immune kinase BIK1 // PLoS Pathogens. 2016. Vol. 12. e1005811. https://doi.org/10.1371/journal.ppat.1005811
  56. Zhou J., Lu D., Xu G., Finlayson S.A., He P., Shan L. The dominant negative ARM domain uncovers multiple functions of PUB13 in Arabidopsis immunity, flowering, and senescence // Journal of Experimental Botany. 2015. Vol. 66. Issue 11. P. 3353–3366. https://doi.org/10.1093/jxb/erv148
  57. Smith J.M., Salamango D.J., Leslie M.E., Collins C.A., Heese A. Sensitivity to Flg22 is modulated by ligand-induced degradation and de novo synthesis of the endogenous flagellin-receptor FLAGELLIN-SENSING2 // Plant Physiology. 2014. Vol. 164. P. 440–454. https://doi.org/10.1104/pp.113.229179
  58. Katagiri F., Tsuda K. Understanding the plant immune system // Molecular Plant-Microbe Interactions. 2010. Vol. 23. Issue 12. P. 1531–1536. https://doi.org/10.1094/MPMI-04-10-0099
  59. Zhang J., Shao F., Cui H., Chen L., Li H., Zou Y., et al. A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants // Cell Host Microbe. 2007. Vol. 1. Issue 3. P. 175–185. https://doi.org/10.1016/j.chom.2007.03.006
  60. Macho A.P., Schwessinger B., Ntoukakis V., Brutus A., Segonzac C., Roy S., et al. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation // Science. 2014. Vol. 343. Issue 6178. P. 1509–1512. https://doi.org/10.1126/science.1248849
  61. Zeng L., Velasquez A.C., Munkvold K.R., Zhang J., Martin G.B. A tomato LysM receptor-like kinase promotes immunity and its kinase activity is inhibited by AvrPtoB // The Plant Journal. 2012. Vol. 69. P. 92–103. https://doi.org/10.1111/j.1365-313X.2011.04773.x
  62. Hemetsberger C., Herrberger C., Zechmann B., Hillmer M., Doehlemann G. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity // PLOS Pathogens. 2012. Vol. 8. e1002684. https://doi.org/10.1371/journal.ppat.1002684
  63. Lukasik E., Takken F.L. STANDing strong, resistance proteins instigators of plant defence // Current Opinion in Plant Biology. 2009. Vol. 12. Issue 4. P. 427–436. https://doi.org/10.1016/j.pbi.2009.03.001
  64. Kadota Y., Shirasu K., Guerois R. NLR sensors meet at the SGT1-HSP90 crossroad // Trends in Biochemical Sciences. 2010. Vol. 35. Issue 4. P. 199–207. https://doi.org/10.1016/j.tibs.2009.12.005
  65. Dangl J.L., Jones J.D.G. Plant pathogens and integrated defence responses to infection // Nature. 2001. Vol. 411. P. 826–833. https://doi.org/10.1038/35081161
  66. Wilton M., Subramaniam R., Elmore J., Felsensteiner C., Coaker G., Desveaux D. The type III effector HopF2 Pto targets Arabidopsis RIN4 protein to promote Pseudomonas syringae virulence. Proceedings of the National Academy of Sciences of the USA. 2010. Vol. 107. Issue 5. P. 2349–2354. https://doi.org/10.1073/pnas.0904739107
  67. Van der Hoorn R.A., Kamoun S. From guard to decoy: a new model for perception of plant pathogen effectors // Plant Cell. 2008. Vol. 20. P. 2009–2017. https://doi.org/10.1105/tpc.108.060194
  68. Gutierrez J.R., Balmuth A.L., Ntoukakis V., Mucyn T.S., Gimenez-Ibanez S., Jones A., et al. Prf immune complexes of tomato are oligomeric and contain multiple Pto-like kinases that diversify effector recognition // The Plant Journal. 2009. Vol. 61. Issue 3. P. 507–518. https://doi.org/10.1111/j.1365-313X.2009.04078.x
  69. Collier S.M., Moffett P. NB-LRRs work a “bait and switch” on pathogens // Trends in Plant Sciences. 2009. Vol. 14. Issue 10. P. 521–529. https://doi.org/10.1016/j.tplants.2009.08.001
  70. Wirthmueller L., Zhang Y., Jones J.D., Parker J.E. Nuclear accumulation of the Arabidopsis immune receptor RPS4 is necessary for triggering EDS1-dependent defense // Current Biology. 2007. Vol. 17. Issue 23. P. 2023–2029. https://doi.org/10.1016/j.cub.2007.10.042
  71. Bai S., Liu J., Chang C., Zhang L., Maekawa T., Wang Q., et al. Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance // PLoS Pathogens. 2012. Vol. 8. Issue 6. e1002752. https://doi.org/10.1371/journal.ppat.1002752
  72. Sarris P.F., Duxbury Z., Huh S.U., Ma Y., Segonzac C., Sklenar J., et al. A plant immune receptor detects pathogen effectors that target WRKY transcription factors // Cell. 2015. Vol.161. Issue 5. P. 1089–1100. https://doi.org/10.1016/j.cell.2015.04.024
  73. Mur L.A., Kenton P., Lloyd A.J., Ougham H., Prats E. The hypersensitive response: the centenary is upon us but how much do we know? // Journal of Experemental Botany. 2008. Vol. 59. Issue 3. P. 501–520. https://doi.org/10.1093/jxb/erm239
  74. Jwa N.-S., Hwang B.K. Convergent evolution of pathogen effectors toward reactive oxygen species signaling networks in plants front // Frontiers in Plant Science. 2017. Vol. 8. P.1687. https://doi.org/10.3389/fpls.2017.01687
  75. Le Roux C., Huet G., Jauneau A., Camborde L., Tremousaygue D., Kraut A., et al. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity // Cell. 2015. Vol. 161. Issue 5. P. 1074–1088. https://doi.org/10.1016/j.cell.2015.04.025

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».