The effect of metal-containing biocomposites of fungal origin on potato plants in vitro
- Authors: Tsivileva O.M.1, Perfileva A.I.2, Pavlova A.G.3
-
Affiliations:
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences
- Siberian Institute of Plant Physiology and Biochemistry, Russian Academy of Sciences, Siberian Branch
- Irkutsk State University
- Issue: Vol 10, No 3 (2020)
- Pages: 412-423
- Section: Physico-chemical biology
- URL: https://ogarev-online.ru/2227-2925/article/view/300760
- DOI: https://doi.org/10.21285/2227-2925-2020-10-3-412-423
- ID: 300760
Cite item
Full Text
Abstract
The effect of metal (II)-containing composites based on extracellular metabolites of basidiomycetes Pleurotus ostreatus, Ganoderma lucidum, Grifola umbellata and Laetiporus sulphureus on the viability and response of potato plants in vitro has been investigated. The Lukyanovsky variety of potato, which is susceptible to ring rot, caused by the bacterium Clavibacter sepedonicus, was studied. The parameters investigated included biofilm formation by Clavibacter sepedonicus, various morphometric parameters of plants and the phytotoxicity of substances of fungal origin. The greatest anti-biofilm-forming effect was observed in metal-containing biocomposites based on G. lucidum; Fe- and Co-containing biopreparations inhibited the formation of Clavibacter sepedonicus biofilms by 40–50%. The plant height was adversely affected by composites, in the absence of metal (II), derived from L. sulphureus and P. ostreatus, as well as by a Co-containing composite derived from P. ostreatus. The decrease in plant growth, in comparison with the control, can be associated with the pronounced antibiotic properties of these basidiomycetes and cobalt. The remaining biocomposites studied did not have an adverse effect on the growth of potatoes in vitro. A number of morphometric parameters (length of internodes, number of leaves) remained virtually unchanged when exposed to biocomposites of fungal origin. In contrast to the vegetative part of plants, the biomass and length of the roots increased by 10–20% under the influence of biocomposites. Copper-containing composites derived from G. lucidum had no phytotoxic effect on plants and enhanced potato resistance to Clavibacter sepedonicus. The beneficial properties of biocomosites may be judged by the degree of stimulation of the physiological processes underlying the formation of the underground part of the plants, which is a prerequisite for increasing yields. The biocomposites are environmentally friendly because of their natural origin and being effective at very low doses. The results obtained using metal-containing biocomposites derived from G. lucidum and Gr. umbellata demonstrate the safety and possible improvement in health of potato plants by using biocomposites derived from cultures of higher fungi.
About the authors
O. M. Tsivileva
Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences
Email: tsivileva@ibppm.ru
A. I. Perfileva
Siberian Institute of Plant Physiology and Biochemistry, Russian Academy of Sciences, Siberian Branch
Email: alla.light@mail.ru
A. G. Pavlova
Irkutsk State UniversityReferences
- Eljounaidi K., Lee S.K., Bae H. Bacterial endophytes as potential biocontrol agents of vascular wilt diseases – Review and future prospects // Biological Control. 2016. Vol. 103. P. 62–68. https://doi.org/10.1016/j.biocontrol.2016.07.013
- Бояркина С.В., Омеличкина Ю.В., Шафикова Т.Н. Генерация пероксида водорода в растениях и культурах клеток картофеля при инфицировании Pectobacterium carotovorum ssp. carotovorum // Известия вузов. Прикладная химия и биотехнология. 2019. Т. 9. N 1. С. 67–74. https://doi.org/10.21285/2227-2925-2019-9-1-67-74
- Van der Wolf J.M., Van Beckhoven J.R.C.M., Hukkanen A., Karjalainen R., Muller P. Fate of Clavibacter michiganensis ssp. sepedonicus, the causal organism of bacterial ring rot in potato, in weeds and field crops // Journal of Phytopathology. 2005. Vol. 153. Issue 6. P. 358–365. https://doi.org/10.1111/j.1439-0434.2005.00985.x
- Li X., Tambong J., Yuan K.X., Chen W., Xu H., Lévesque C.A., et al. Re-classification of Clavibacter michiganensis subspecies on the basis of whole-genome and multi-locus sequence analyses // International Journal of Systematic and Evolutionary Microbiology. 2018. Vol. 68. Issue 1. P. 234–240. https://doi.org/10.1099/ijsem.0.002492
- Van der Wolf J.M., Elphinstone J.G., Stead D.E., Metzler M., Müller P., Hukkanen A., Karjalainen R. Epidemiology of Clavibacter michiganensis subsp. sepedonicus in relation to control of bacterial ring rot. Plant Research International, Wageningen, The Netherlands. 2005. 38 p.
- Żaczek A., Struś K., Sokołowska A., Parniewski P., Wojtasik A., Dziadek J. Differen-tiation of Clavibacter michiganensis subsp. Sepedonicus using PCR melting profile and variable number of tandem repeat methods // Letters in Applied Microbiology. 2019. Vol. 68. Issue 1. P. 24–30. https://doi.org/10.1111/lam.13081
- Бояркина С.В., Омеличкина Ю.В., Волкова О.Д., Еникеев А.Г., Верхотуров В.В., Шафикова Т.Н. Ответные реакции растений табака на воздействие биотрофа Clavibacter michiganensis и некротрофа Pectobacterium carotovorum // Известия вузов. Прикладная химия и биотехнология. 2016. Т. 6. N 3. С. 42–49. https://doi.org/10.21285/2227-2925-2016-6-3-42–49
- Киргизова И.В., Гаджимурадова А.М., Омаров Р.Т. Особенности накопления антиоксидантных ферментов у растений картофеля в условиях биотического и абиотического стрессов // Известия вузов. Прикладная химия и биотехнология. 2018. Т. 8. N 4. С. 42–54. https://doi.org/10.21285/2227-2925-2018-8-4-42-54
- Lin D., Xing B. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth // Environmental Pollution. 2007. Vol. 150. Issue 2. P. 243–250. https://doi.org/10.1016/j.envpol.2007.01.016
- Lee W.-M., An Y.-J., Yoon H., Kweon H.-S. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles // Environmental Toxicology and Chemistry: An International Journal. 2008. Vol. 27. N 9. P. 1915–1921. https://doi.org/10.1897/07-481.1
- Lee C.W., Mahendra S., Zodrow K., Li D., Tsai Y.-C., Braam J., et al. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana // Environmental Toxicology and Chemistry: An International Journal. 2010. Vol. 29. Issue 3. P. 669–675. https://doi.org/10.1002/etc.58
- Benn T.M., Westerhoff P. Nanoparticle silver released into water from commercially available sock fabrics // Environmental Science & Technology. 2008. Vol. 42. Issue 11. P. 4133–4139. https://doi.org/10.1021/es7032718
- Tsivileva O.M., Perfileva A.I. Selenium compounds biotransformed by mushrooms: not only dietary sources, but also toxicity mediators // Current Nutrition & Food Science. 2017. Vol. 13. Issue 2. P. 82–96. https://doi.org/10.2174/1573401313666170117144547
- Romanenko A.S., Riffel A.A., Graskova I.A., Rachenko M.A. The role of extracellular pH-homeostasis in potato resistance to ring rot pathogen // Journal of Phytopathology. 1999. Vol. 147. Issue 11-12. P. 679–686. https://doi.org/10.1046/j.1439-0434.1999.00450.x
- Омеличкина Ю.В., Бояркина С.В., Шафикова Т.Н. Реакции эффектор-активируемого иммунитета в культурах клеток картофеля и табака при действии фитопатогена Clavibacter michiganensis ssp. sepedonicus // Физиология растений. 2017. Т. 64. N 3. С. 204–212. https://doi.org/10.7868/S0015330317020099
- Цивилева О.М., Перфильева А.И., Иванова А.А., Павлова А.Г. Биополимерные композиты грибного происхождения против бактериального фитопатогена // Биомика. 2018. Т. 10. N 2. C. 210–213. https://doi.org/10.31301/2221-6197.bmcs.2018-30
- Аветисян Л.Р., Шагинян И.А., Чернуха М.Ю. Основные механизмы формирования эпидемически значимых госпитальных клонов бактерий // Успехи современной биологии. 2016. Т. 136. N 1. C. 41–52.
- Akintokun A.K., Ojesola C.O., Akintokun P.O., Oloyede A.R. Antagonistic effect of Bacillus thuringiensis for the control of bacterial wilt of tomato (Lycopersicon esculentum Mill) // Nigerian Journal of Biotechnology. 2019. Vol. 36. Issue 1. P. 94–102. https://dx.doi.org/10.4314/njb.v36i1.13
- Елисеева О.В., Елисеев А.Ф. Содержание некоторых микроэлементов в вегетативных органах редьки (Raphanus sativus L.) // Известия Тимирязевской сельскохозяйственной академии. ТСХА. 2011. N 2. С. 59–68.
- Sabo V.A., Knezevic P. Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review // Industrial Crops and Products. 2019. Vol. 132. P. 413–429. https://doi.org/10.1016/j.indcrop.2019.02.051
- Eichenlaub R., Gartemann K.H. The Clavibacter michiganensis subspecies: molecular investigation of gram-positive bacterial plant pathogens // Annual Review of Phytopathology. 2011. Vol. 49. P. 445–464. https://doi.org/10.1146/annurev-phyto-072910-095258
- Цивилева O.M., Нгуен T.Ф., Ву Л.Н., Чернышова М.П., Юрасов Н.А., Петров А.Н.. Липидные компоненты пигментированного и глубинного мицелия Ganoderma разных климатических зон // Известия вузов. Прикладная химия и биотехнология. 2015. N 3. С. 37–47.
- Liang C., Tian D., Liu Y., Li H., Zhu J., Li M., et al. Review of the molecular mechanisms of Ganoderma lucidum triterpenoids: Ganoderic acids A, C2, D, F, DM, X and Y // European Journal of Medicinal Chemistry. 2019. Vol. 174. P. 130–141. https://doi.org/10.1016/j.ejmech.2019.04.039
- Ikon G.M., Udobre E.A., Etang U.E., Ekanemesang U.M., Ebana R.U., Edet U.O. Phytochemical screening, proximate composition and antibacterial activity of oyster mushroom, Pleurotus ostreatus collected from Etim Ekpo in Akwa Ibom state, Nigeria // Asian Food Science Journal. 2019. Vol. 6. Issue 2. P. 1–10. https://doi.org/10.9734/AFSJ/2019/45956
- Younis A.M., Yosri M., Stewart J.K. In vitro evaluation of pleiotropic properties of wild mushroom Laetiporus sulphureus // Annals of Agricultural Sciences. 2019. Vol. 64. Issue 1. P. 79–87. https://doi.org/10.1016/j.aoas.2019.05.001
- Matute R.G., Serra A., Figlas D., Curvetto N. Copper and zinc bioaccumulation and bioavailability of Ganoderma lucidum // Journal of Medicinal Food. 2011. Vol. 14. Issue 10. P. 1273–1279. https://doi.org/10.1089/jmf.2010.0206
- Glukhova L.B., Frank Y.A., Danilova E.V., Avakyan M.R., Banks D., Tuovinen O.H., et al. Isolation, characterization, and metal response of novel, acid-tolerant Penicillium spp. from extremely metal-rich waters at a mining site in Transbaikal (Siberia, Russia) // Microbial Ecology. 2018. Vol. 76. Issue 4. P. 911–924. https://doi.org/10.1007/s00248-018-1186-0
- Ćilerdžić J., Galić M., Vukojević J., Stajic M. Pleurotus ostreatus and Laetiporus sulphureus (Agaricomycetes): possible agents against Alzheimer and Parkinson diseases // International Journal of Medicinal Mushrooms. 2019. Vol. 21. Issue 3. P. 275–289. https://doi.org/10.1615/IntJMedMushrooms.2019030136
- Xia X.-J., Zhou Y.-H., Shi K., Zhou J., Foyer C.H., Yu J.-Q. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance // Journal of Experimental Botany. 2015. Vol. 66. Issue 10. P. 2839–2856. https://doi.org/10.1093/jxb/erv089
- Milanović J., Oklestkova J., Novák O., Mihaljević S. Effects of potato spindle tuber viroid infection on phytohormone and antioxidant responses in symptomless Solanum laxum plants // Journal of Plant Growth Regulation. 2019. Vol. 38. Issue 1. P. 325–332. https://doi.org/10.1007/s00344-018-9842-7
- Efimova M.V., Kolomeichuk L.V., Boyko E.V., Malofii M.K., Vidershpan A.N., Plyusnin I.N., et al. Physiological mechanisms of Solanum tuberosum L. plants’ tolerance to chloride salinity // Russian Journal of Plant Physiology. 2018. Vol. 65. Issue 3. P. 394–403. https://doi.org/10.1134/S1021443718030020
- Поликсенова В.Д. Индуцированная устойчивость растений к патогенам и абиотическим стрессовым факторам (на примере томата) // Вестник Белорусского государственного университета. Серия 2. Химия. Биология. География. 2009. N 1. С. 48–60.
- Karasov T.L., Chae E., Herman J.J., Bergelson J. Mechanisms to mitigate the trade-off between growth and defense // The Plant Cell. 2017. Vol. 29. Issue 4. P. 666–680. https://doi.org/10.1105/tpc.16.00931
Supplementary files

