Phytate hydrolysing activity of the Aspergillus niger L-4 micromycete strain
- Authors: Musta Ogly N.M.1, Sharova N.Y.1,2
-
Affiliations:
- University of Information Technology, Mechanics and Optics
- All-Russian Research Institute of Food Additives – a branch of the Federal Scientific Center named after V.M. Gorbatov
- Issue: Vol 10, No 2 (2020)
- Pages: 232-239
- Section: Physico-chemical biology
- URL: https://ogarev-online.ru/2227-2925/article/view/299678
- DOI: https://doi.org/10.21285/2227-2925-2020-10-2-232-239
- ID: 299678
Cite item
Full Text
Abstract
The aim of the study was to study the phytase synthesis capability of Aspergillus niger L-4 strain. The method for determining phytase activity is based on establishing the content of inorganic phosphates as a result of the action of phytase on the substrate under certain standard conditions by binding them with a vanadium-molybdenum reagent to form a coloured complex. The use of phytases for the hydrolysis of phytates in animal feed is important from the point of view of preserving the environment: when phytate complexes are destroyed, phosphorus is released, which performs an important structural and regulatory function, ensuring the normal development of bone and dental tissues and supporting their safety and integrity. Phosphoric acid is involved in the synthesis of kinases responsible for the normal course of chemical reactions in cells, in fat metabolism, as well as in the synthesis and breakdown of starch and glycogen. This reduces the release of undigested phosphorus into the environment. The object of the study consisted of native solutions obtained by culturing an industrial strain of acid-forming A. niger L-4 on various carbohydrate-containing media. The A. niger L-4 strain, previously selected at the All-Russian Scientific Research Institute of Food Additives for fermentation of molasses, has the ability to synthesise extracellular phytase. This paper presents the results of studies of phytase activity during the cultivation of A. niger L-4 on carbohydrate-containing media. It was found that in order components of the sucrose-mineral medium provide an elevated level of low-molecular-weight sugars necessary for increasing the productivity of phytase biosynthesis. Phytase activity in the native solution was shown to increase over 72 hours of fermentation to reach a value of 25.8±0.1 units/cm3. The phytase activity was 1.5 times higher than the fermentation process of a corn starch hydrolysate with a dextrose equivalent DE = 21±1 %, ensuring the productive biosynthesis of citric acid.
Keywords
About the authors
N. M. Musta Ogly
University of Information Technology, Mechanics and Optics
Email: nargul_m@mail.ru
N. Yu. Sharova
University of Information Technology, Mechanics and Optics; All-Russian Research Institute of Food Additives – a branch of the Federal Scientific Center named after V.M. Gorbatov
Email: natalya_sharova1@mail.ru
References
- Fugthong А., Boonyapakron K., Sornlek W., Tanapongpipat S., Eurwilaichitr L., Pootanakit K. Biochemical characterization and in vitro digestibility assay of Eupenicillium parvum (BCC17694) phytase expressed in Pichia pastoris // Protein Expression and Purification. 2010. Vol. 70. Issue 1. P. 60–67. https://doi.org/10.1016/j.pep.2009.10.001
- Hamad H.O., Alma M.H., Ismael H.M., Göçeri A. The effect of some sugars on the growth of Aspergillus niger // Doga Bilimleri Dergisi. 2014. Vol. 17. Issue 4. Р. 7–11. https://doi.org/10.18016/ksujns.28479
- Greiner R., Da Silva L.G., Couri S. Purification and characterisation of an extracellular phytase from Aspergillus niger 11T53A9 // Brazilian Journal of Microbiology. 2009. Vol. 40. Issue 4. Р. 795–807. https://doi.org/10.1590/S1517-83822009000400010
- Gargova S., Sariyska M. Effect of culture conditions on the biosynthesis of Aspergillus niger phytase and acid phosphatase // Enzyme and Microbial Technology. 2003. Vol. 32. Issue 2. Р. 231–235. https://doi.org/10.1016/S0141-0229(02)00247-8
- Da Silva L.G., Trugo L.C., Da Costa Terzi S., Couri S. Low phytate lupin flour based biomass obtained by fermentation with a mutant of Aspergillus niger // Process Biochemistry. 2005. Vol. 40. Issue 2. Р. 951–954. https://doi.org/10.1016/j.procbio.2004.02.016
- Casey A., Walsh G. Purification and characterization of extracellular phytase from Aspergillus niger ATCC 9142 // Bioresource Technology. 2003. Vol. 86. Issue 2. Р. 183–188. https://doi.org/10.1016/S0960-8524(02)00145-1
- Ptak A., Bedford M.R., Świątkiewicz S., Żyła K., Józefiak D. Phytase modulates ileal microbiota and enhances growth performance of the broiler chickens // PLoS One. 2015. Vol. 10. Issue 3. 15 p. https://doi.org/10.1371/journal.pone.0119770
- Vucenik I., Shamsuddin A.K.M. Cancer inhibition by inositol hexaphosphate (IP6) and inositol: from laboratory to clinic // Journal of Nutrition. 2003. Vol. 133. Issue 11. P. 3778S–3784S. https://doi.org/10.1093/jn/133.11.3778S
- Coban H.B., Demirci A. Screening of phytase producers and optimization of culture conditions for submerged fermentation // Bioprocess and Biosystems Engineering. 2014. Vol. 37. Issue 4. P. 609–616. https://doi.org/10.1007/s00449-013-1028-x
- Jariwalla R.J. Rice-bran products: phytоnutrients with potential applications in preventive and clinical medicine // Drugs Experimental and Clinical Research. 2001. Vol. 17. Issue 1. P. 17–26.
- Grases F., Simonet B.M., Prieto R.M., March J.G. Variation of InsP4, InsP5 and InsP6 levels in tissues and biological fluids depending on dietary phytate // The Journal of Nutritional Biochemistry. 2001. Vol. 12. Issue 10. P. 595–601. https://doi.org/10.1016/S0955-2863(01)00178-4
- Niu J., Arentshorst M.P., Deepa S.N., Dai Z., Baker S.E., Frisvad J.C., et al. Identification of a classical mutant in the industrial host Aspergillus niger by systems genetics: LaeA is required for citric acid production and regulates the formation of some secondary metabolites // G3: Genes, Genomes, Genetics. 2016. Vol. 6. Issue 1. P. 193–204. https://doi.org/10.1534/g3.115.024067
- Shivanna G.B., Venkateswaran G. Phytase production by Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01 through submerged and solid-state fermentation // The Scientific World Journal. 2014. Vol. 29. Article ID 392615, 6 p. https://doi.org/10.1155/2014/392615
- Mitchinson C., Solheim L.P. Method for liquefying starch. US patent no. 5652127, 1997.
- Kvist S., Carlsson T., Lawther J.M., DeCastro F.B. Process for the fractionation of cereal brans. US patent no. 20050089602, 2005.
- Шарова Н.Ю. Продуцирование ингибитора амилаз при ферментации гидролизатов крахмала кислотообразующим штаммом Aspergillus niger Л-4 // Вестник Российской академии сельскохозяйственных наук. 2013. N 3. С. 45–47.
- Шарова Н.Ю., Сафронова В.И. Генетическая паспортизация штамма Аspergillus niger Л-4 – промышленного продуцента лимонной кислоты, с помощью геномного AFLPфингерпринтинга // Сельскохозяйственная биология. 2016. Т. 51. N 2. С. 204–212. https://doi.org/10.15389/agrobiology.2016.2.204rus
- Патент № 2366712, Российская Федерация. Способ получения лимонной кислоты, альфа-амилазы и глюкоамилазы / Н.Ю. Шарова, Т.А. Позднякова, Т.В. Выборнова, Д.Х. Кулев.; патентообладатель ВНИИ пищевых ароматизаторов, кислот и красителей РАСХН; заявл. 06.07.2007; опубл. 10.09.2009.
- Шарова Н.Ю., Никифорова Т.А. Регуляция направленности биосинтеза лимонной кислоты при биоконверсии гидролизатов крахмала плесневым грибом Aspergillus niger // Вестник Российской академии сельскохозяйственных наук. 2007. N 6. С. 19–21
- Suleimenova Zh., Akhmetsadykov N., Kalieva A., Mustafin K., Saduyeva Zh. Effect of different cultural conditions for phytase production by Aspergillus niger in submerged fermentation // Advances in Enzyme Research. 2016. Vol. 4. Issue 2. P. 62–67. https://doi.org/10.4236/aer.2016.42007
Supplementary files

