LIQUID-PHASE SYNTHESIS OF CALCIUM PHOSPHATES IN THE PRESENCE OF GALLIC ACID

Cover Page

Cite item

Full Text

Abstract

Acid, medium, and basic calcium phosphates were obtained by liquid-phase synthesis from aqueous solutions of calcium chloride and ammonium hydrogen phosphate at Ca/P molar ratios of 1,0-1,67 and pH 5-11 in the presence of a polyphenol compound (gallic acid). Using X-ray phase analysis and IR spectroscopy, it has been shown that brushite is formed in a slightly acidic medium (pH 5-6) at a Ca/P molar ratio of 1,0, the unit cell size of which can decrease in the presence of gallic acid. In an alkaline environment (pH 8-11), the polyphenolic compound chelates calcium ions, which leads to the formation of amorphized calcium phosphate, which after heating at 800°C turns into β-tricalcium phosphate and hydroxyapatite. It was found that the presence of gallic acid promotes the formation of basic calcium phosphate at a lower molar ratio (Ca/P 1,5) than for stoichiometric hydroxyapatite (Ca/P 1,67). It has been shown by thermal analysis that the liquid-phase synthesis of calcium phosphates in the presence of gallic acid promotes the transformation of brushite into calcium pyrophosphate, and amorphized calcium phosphates into tricalcium phosphate and hydroxyapatite, upon high-temperature treatment.

About the authors

Olga N. Musskaya

Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

Email: musskaja@igic.bas-net.by
Minsk, Belarus

Valentina K. Krut'ko

Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

Minsk, Belarus

Ilya E. Glazov

Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

Minsk, Belarus

Anatoly I. Kulak

Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

Minsk, Belarus

References

  1. Zahrani AL, N.A. Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: A review / N.A. Al Zahrani, R.M. El-Shishtawy, A.M. Asiri // European Journal of Medicinal Chemistry.- 2020. - V. 204. - Art. № 112609. - 37 p. doi: 10.1016/j.ejmech.2020.112609.
  2. Badhani, B. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications / B. Badhani, N. Sharma, R. Kakkar // RSC Advances. - 2015. - V. 5. - I. 35. - P. 27540-27557. doi: 10.1039/C5RA01911G.
  3. Sandmann, B.J. Stability constants of calcium, magnesium and zinc gallate using a divalent ion-selective electrode / B.J. Sandmann, M.H. Chien, R.A. Sandmann // Analytical Letters. - 1985. - V. 18. - I. 2. - P. 149-159. doi: 10.1080/00032718508068758.
  4. El-Megharbel, S.M. Synthesis, spectroscopic characterizations, conductometric titration and investigation of potent antioxidant activities of gallic acid complexes with Ca (II), Cu (II), Zn(III), Cr(III) and Se (IV) metal ions / S.M. El-Megharbel, R.Z. Hamza // Journal of Molecular Liquids. - 2022. - V. 358. - Art. № 119196. - 13 p. doi: 10.1016/j.molliq.2022.119196.
  5. Azhar, B. Aqueous synthesis of highly adsorptive copper-gallic acid metal-organic framework / B. Azhar, A.E. Angkawijaya, S.P. Santoso et al. // Scientific Reports. - 2020. - V. 10. - Art. № 19212. - 12 p. doi: 10.1038/s41598-020-75927-4.
  6. Glazov, I.E. Formation of hydroxyapatite-based hybrid materials in the presence of platelet-poor plasma additive / I.E. Glazov, V.K. Krut'ko, T.V. Safronova et al. // Biomimetics. - 2023. - V. 8. - I. 3. - Art. № 297.- 12 p. doi: 10.3390/biomimetics8030297.
  7. Богданова, Е.А. Разработка композиционных смесей на основе гидроксиапатита и биогенных элементов для формирования биоактивных покрытий / Е.А. Богданова, В.М. Скачков, К.В. Нефедова // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2022. - Вып. 14.- С. 771-780. doi: 10.26456/pcascnn/2022.14.771.
  8. Tang, B. Effects of gallic acid on the morphology and growth of hydroxyapatite crystals / B. Tang, H. Yuan, L. Cheng et al. // Archives of Oral Biology. - 2015. - V. 60. - I. 1. - P. 167-173. doi: 10.1016/j.archoralbio.2014.09.011.
  9. Tang, B. Control of hydroxyapatite crystal growth by gallic acid / B. Tang, H. Yuan, L. Cheng et al. // Dental Materials Journal. - 2015. - V. 34. - I. 1. - P. 108-113. doi: 10.4012/dmj.2014-175.
  10. Jerdioui, S. Effects of gallic acid on the nanocrystalline hydroxyapatite formation using the neutralization process / S. Jerdioui, L.L. Elansari, N. Jaradat et al. // Journal of Trace Elements and Minerals. - 2022. - V. 2.- Art. № 100009. - 8 p. doi: 10.1016/j.jtemin.2022.100009.
  11. Глазов, И.Е. Апатитные фосфаты кальция: жидкофазное формирование, термические превращения, терминология и идентификация / И.Е. Глазов, В.К. Крутько, О.Н. Мусская, А.И. Кулак // Журнал неорганической химии. - 2022. - Т. 67. - № 2. - С. 193-202. doi: 10.31857/S0044457X22020040.
  12. Мусская, О.Н. Адсорбционно-структурные свойства ксерогелей фосфатов кальция, полученных жидкофазным синтезом / О.Н. Мусская, А.И. Кулак, В.К. Крутько и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2018. - Вып. 10. - С. 468-476. doi: 10.26456/pcascnn/2018.10.468.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).