FORMATION OF COPPER CLUSTERS IN THE PROCESS OF BIOCORROSION OF ALUMINUM ALLOYS BY MICROSCOPIC FUNGI
- Authors: Belov D.V.1, Belyaev S.N.1, Yunin P.A.2, Nazarov A.A.2
-
Affiliations:
- Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the RAS
- The Institute for Physics of Microstructures - branch of the IAP RAS
- Issue: No 15 (2023)
- Pages: 888-912
- Section: Nanochemistry
- URL: https://ogarev-online.ru/2226-4442/article/view/378522
- DOI: https://doi.org/10.26456/pcascnn/2023.15.888
- EDN: https://elibrary.ru/AIBDKX
- ID: 378522
Cite item
Full Text
Abstract
About the authors
Denis V. Belov
Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the RAS
Email: bdv@ipfran.RUS
Nizhny Novgorod, Russia)The Institute for Physics of Microstructures - branch of the IAP RAS (Afonino, Russia
Sergey N. Belyaev
Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the RASNizhny Novgorod, Russia)The Institute for Physics of Microstructures - branch of the IAP RAS (Afonino, Russia
Pavel A. Yunin
The Institute for Physics of Microstructures - branch of the IAP RASAfonino, Russia
Artem A. Nazarov
The Institute for Physics of Microstructures - branch of the IAP RASAfonino, Russia
References
- Zhao, J. Biocorrosion of copper metal by Aspergillus niger / J. Zhao, L. Csetenyi, G.M. Gadd // International Biodeterioration and Biodegradation. - 2020. - V. 154. - Art. № 105081. - 10 p. doi: 10.1016/j.ibiod.2020.105081.
- Horeh, N.B. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger / N.B. Horeh, S.M. Mousavi, S.A. Shojaosadati // Journal of Power Sources. - 2016. - V. 320. - P. 257-266. doi: 10.1016/j.jpowsour.2016.04.104.
- Lekbach, Y. Microbial corrosion of metals: The corrosion microbiome / Y. Lekbach, T. Liu, Y. Li et al. // Advances in Microbial Physiology. - 2021. - V. 78. - P. 317-390. doi: 10.1016/bs.ampbs.2021.01.002.
- Tang, H.Y. Stainless steel corrosion via direct iron-to-microbe electron transfer by Geobacter species / H.Y. Tang, C. Yang, T. Ueki et al. // The ISME Journal. - 2021. - V. 15. - № 10. - P. 3084-3093. doi: 10.1038/s41396-021-00990-2.
- Li, S. Extracellular electron transfer of Bacillus cereus biofilm and its effect on the corrosion behaviour of 316L stainless steel / S. Li, L. Li, Q. Qu et al. // Colloids and Surfaces B: Biointerfaces. - 2019. - V. 173.- P. 139-147. doi: 10.1016/j.colsurfb.2018.09.059.
- Costerton, J.W. How Bacteria Stick / J.W. Costerton, G.G. Geesey, K.J. Cheng // Scientific American.- 1978. - V. 238. - I. 1. - P. 86-95. doi: 10.1038/scientificamerican0178-86.
- Lamin, A. Quorum sensing inhibitors applications: A new prospect for mitigation of microbiologically influenced corrosion / A. Lamin, A.H. Kaksonen, I.S. Cole, X.-B. Chen // Bioelectrochemistry. - 2022. - V. 145. - Art. № 108050. - 10 p. doi: 10.1016/j.bioelechem.2022.108050.
- Huang, S. Field testing of an enzymatic quorum quencher coating additive to reduce biocorrosion of steel / S. Huang, C. Bergonzi, S. Smith et al. // bioRxiv. - 2022. - Art. № 518914. - 31 p. doi: 10.1101/2022.12.02.518914.
- Mehmood, A. Fungal quorum-sensing molecules and inhibitors with potential antifungal activity: A review / A. Mehmood, G. Liu, X. Wang et al. // Molecules. - 2019. - V. 24. - I 10. - Art. № 1950. 18 p. doi: 10.3390/molecules24101950.
- Wang, Y. Extracellular polymeric substances and biocorrosion/biofouling: Recent advances and future perspectives / Y. Wang, R. Zhang, J. Duan et al. // International Journal of Molecular Sciences. - 2022. - V. 23. - I. 10. - Art. no. 5566. - 20 p. doi: 10.3390/ijms23105566.
- Pal, M.K. Microbial influenced corrosion: Understanding bioadhesion and biofilm formation / M.K. Pal, M. Lavanya // Journal of Bio- and Tribo-Corrosion. - 2022. - V. 8. - Art. № 76. - 13 p. doi: 10.1007/s40735-022-00677-x.
- Belozerskaya, T.A. Reactive oxygen species and the strategy of antioxidant defense in fungi: A review / T.A. Belozerskaya, N.N. Gessler // Applied Biochemistry and Microbiology. - 2007. - V. 43. - I. 5. - P. 506-515. doi: 10.1134/S0003683807050031.
- Sies, H. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents / H. Sies, D.P. Jones // Nature Reviews Molecular Cell Biology. - 2020. - V. 21. - I. 7. - P. 363-383. doi: 10.1038/s41580-020-0230-3.
- Gessler, N.N. Reactive oxygen species in regulation of fungal development / N.N. Gessler, A.A. Aver'yanov, T.A. Belozerskaya // Biochemistry (Moscow). - 2007. - V. 72. - I. 10. - P. 1091-1109. doi: 10.1134/S0006297907100070.
- Aslanidi, K.B. Resistance of microscopic fungi to oxidative stress / K.B. Aslanidi, A.E. Ivanova, Y.V. Blazheevskaya et al. // Doklady Biochemistry and Biophysics. - 2003. - V. 392. - I. 1. - P. 241-243. doi: 10.1023/a:1026178410988.
- Hedison, T.M. Insights into the H2O2-driven catalytic mechanism of fungal lytic polysaccharide monooxygenases / T.M. Hedison, E. Breslmayr, M. Shanmugam et al. // The FEBS Journal. - 2021. - V. 288.- I. 13. - P. 4115-4128. doi: 10.1111/febs.15704.
- Bissaro, B. Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2 / B. Bissaro, Å.K. Røhr, G. Müller et al. // Nature Chemical Biology. - 2017. - V. 13. - I. 10. - P. 1123-1128. doi: 10.1038/nchembio.2470.
- Sideri, M. Differentiation and hydrogen peroxide production in Sclerotium rolfsii are induced by the oxidizing growth factors, light and iron / m. sideri, c.d. georgiou // Mycologia. - 2000. - V. 92. - I. 6. - P. 1033-1042. doi: 10.2307/3761468.
- Zhang, J. Guttation capsules containing hydrogen peroxide: an evolutionarily conserved NADPH oxidase gains a role in wars between related fungi / J. Zhang, Y. Miao, M.J. Rahimi et al. // Environmental Microbiology. - 2019. - V. 21. -№ 8. - P. 2644-2658. doi: 10.1111/1462-2920.14575.
- Wiberth, C.-C. Oxidative enzymes activity and hydrogen peroxide production in white-rot fungi and soil-borne micromycetes co-cultures / C.-C. Wiberth, A.-Z. C. Casandra, F. Zhiliang, H. Gabriela // Annals of Microbiology. - 2018. - V. 69. - I. 2. - P. 171-181. doi: 10.1007/s13213-018-1413-4.
- Xu, W. Accelerated corrosion of 316L stainless steel in simulated body fluids in the presence of H2O2 and albumin / W. Xu, F. Yu, L. Yang et al. // Materials Science and Engineering: C. - 2018. - V. 92. - P. 11-19. doi: 10.1016/j.msec.2018.06.023.
- Dong, C. Coupling mechanism between wear and oxidation processes of 304 stainless steel in hydrogen peroxide environments / C. Dong, C. Yuan, X. Bai et al. // Scientific Reports. - 2017. - V. 7. - I. 1.- Art. № 2327. 9 p. - doi: 10.1038/s41598-017-02530-5.
- Gong, Z. Oxidation towards enrofloxacin degradation over nanoscale zero-valent copper: mechanism and products / Z. Gong, J. Xie, J. Liu et al. // Environmental Science and Pollution Research. - 2023. - V. 30. - I. 13. - P. 38700-38712. doi: 10.1007/s11356-022-24984-5.
- Kumar, S. Nanoscale zerovalent copper (nZVC) catalyzed environmental remediation of organic and inorganic contaminants: A review / S. Kumar, P. Kaur, R.S. Brar, J.N. Babu // Heliyon. - 2022. - V. 8. - I. 8.- Art. № e10140. - 21 р. doi: 10.1016/j.heliyon.2022.e10140.
- Белов, Д.В. О роли активных форм кислорода в инициировании коррозии металлов микроскопическими грибами / Д.В. Белов, М.В. Челнокова, Т.Н. Соколова, В.Р. Карташов // Коррозия: материалы, защита. - 2009. - № 11. - С. 43-48.
- Белов, Д.В. Генерация супероксидного анион-радикала микромицетами и его роль в коррозии металлов / Д.В. Белов, М.В. Челнокова, Т.Н. Соколова и др. // Известия высших учебных заведений. Химия и химическая технология. - 2011. - Т. 54. - № 10. - C. 133-136.
- Bielski, B.H.J. Reactivity of HO2/O2- radicals in aqueous solution / B.H.J. Bielski, D.E. Cabelli, R.L. Arudi, A.B. Ross // Journal of Physical and Chemical Reference Data. - 1985. - V. 14. - I. 4. - P. 1041-1100. doi: 10.1063/1.555739.
- Winterbourn, C.C. Biological chemistry of superoxide radicals / C.C. Winterbourn // ChemTexts. - 2020.- V. 6. - I. 1. - Art. № 7. 13 p. doi: 10.1007/s40828-019-0101-8.
- Khudyakov, I.V. Oxidation-reduction reactions of free radicals / I.V. Khudyakov, V.A. Kuz'min // Russian Chemical Reviews. - 1978. - V. 47. - I. 1. - P. 22-42. doi: 10.1070/rc1978v047n01abeh002201.
- Meisel, D. Hydroperoxyl radical reactions. II. Cupric ions in modulated photolysis. Electron paramagnetic resonance experiments / D. Meisel, H. Levanon, G. Czapski // The Journal of Physical Chemistry. - 1974.- V. 78. - I. 8. - P. 779-782. doi: 10.1021/j100601a004.
- Pham, A.N. Fenton-like copper redox chemistry revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production / A.N. Pham, G. Xing, C.J. Miller, T.D. Waite // Journal of Catalysis.- 2013. - V. 301. - P. 54-64. doi: 10.1016/j.jcat.2013.01.025.
- Belov, D.V. Research of corrosion cracking of D16T and Amg6 aluminum alloys exposed to microscopic fungi / D.V. Belov, S.N. Belyaev, M.V. Maksimov, G.A. Gevorgyan // Inorganic Materials: Applied Research.- 2022. - V. 13. - I. 6. - P. 1640-1651. doi: 10.1134/s2075113322060028.
- Коваль, Э.З. Микодеструкторы промышленных материалов / Э.З. Коваль, Л.П. Сидоренко. - Киев: Наукова думка, 1989. - 192 с.
- Ринальди, М. Определитель патогенных и условно патогенных грибов / М. Ринальди, Д. Саттон, А. Фотергилл. - М.: Мир, 2001. - 486 с.
- Berridge, M.V. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction / M.V. Berridge, P.M. Herst, A.S. Tan // Biotechnology Annual Review. - 2005. - V. 11. - P. 127-152. doi: 10.1016/s1387-2656(05)11004-7.
- Seidler, E. The tetrazolium-fomazan system: design and histochemistry / E. Seidler // Progress in Histochemistry and Cytochemistry. - 1991. - V. 24. - I. 1. - P. 3-79. doi: 10.1016/s0079-6336(11)80060-4.
- Fridovich, I. Superoxide radical and superoxide dismutases / I. Fridovich // Annual Review of Biochemistry. - 1995. - V. 64. - I. 1. - P. 97-112. doi: 10.1146/annurev.bi.64.070195.000525.
- Burns, J.M. Methods for reactive oxygen species (ROS) detection in aqueous environments / J.M. Burns, W.J. Cooper, J.L. Ferry et al. // Aquatic Sciences. - 2012. - V. 74. - I. 4. - P. 683-734. doi: 10.1007/s00027-012-0251-x.
- Pobiner, H. Determination of hydroperoxides in hydrocarbon by conversion to hydrogen peroxide and measurement by titanium complexing / H. Pobiner // Analytical Chemistry. - 1961. - V. 33. - I. 10. - P. 1423-1426. 10.1021/ac60178a045.
- Белов, Д.В. О механизме биокоррозии сплавов алюминия Д16Т и АМг6 (обзор) / Д.В. Белов, С.Н. Беляев, М.В. Максимов, Г.А. Геворгян // Коррозия: материалы, защита. - 2021. - Т. 10. - С. 1-22. doi: 10.31044/1813-7016-2021-0-10-1-22.
- Belov, D.V. Physicoсhemical features of the mechanism of the biocorrosion of D16T duralumin by microscopic fungi / D.V. Belov, S.N. Belyaev, G.A. Gevorgyan, M.V. Maksimov // Russian Journal of Physical Chemistry A. - 2022. - V. 96. - I. 8. - P. 1599-1614. doi: 10.1134/S0036024422080052.
- Merkel, T.H. General corrosion of copper in domestic drinking water installations: scientific background and mechanistic understanding / T.H. Merkel, S.O. Pehkonen // Corrosion Engineering, Science and Technology. - 2006. - V. 41. - I. 1. - P. 21-37. doi: 10.1179/174327806X94009.
- Крымский, C.В. Межкристаллитная коррозия криопрокатанного и состаренного алюминиевого сплава Д16 / С.В. Крымский, Р.Р. Ильясов, Е.В. Автократова и др. // Физикохимия поверхности и защита материалов. - 2017. - Т. 53. - № 6. - C. 646-655. doi: 10.7868/S0044185617060158.
Supplementary files
