PLANAR JET PRINTING OF LOCALIZED Ni/P(VDF-TrFE)/Ni STRUCTURES FOR PIEZO- AND PYROELECTRIC MATRIXES

Cover Page

Cite item

Full Text

Abstract

This paper describes manufacturing the film structures based on a polar copolymer of poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) using the process of drop-by-drop local deposition on metallized substrates. The produced samples were a crossbar structures of arrays of ferroelectric P(VDF-TrFE) microislands metallized with nickel stripes using a combined 2 D printing method. For the polymer layer deposition, a number of solvents with different viscosities and dipole moments of molecules were considered, and their influence on the geometry and the polar properties of printed layers was shown. Using the piezoelectric force microscopy, the value of the piezoelectric modulus of d 33 at the nanoscale level was determined. This d 33 modulus is similar to values of d 33 for P(VDF-TrFE) films produced by the standard solvent cast method. On the base of amplitude of the pyroelectric current in the dynamic method, the value of the pyroelectric coefficient ( p ) was determined, varying from 2×10-5 to 4×10-5 C/(m2×K). These values are comparable to the pyroelectric coefficient of films P (VDF-TrFE) produced by the standard method. The highest values of d 33 and p correspond to structures produced from solutions containing more than 20% of propylene carbonate in the initial solvent, the molecules of which have a large (4,9 D) dipole moment.

About the authors

Alexey N. Belov

National Research University of Electronic Technology, Zelenograd

Moscow, Russia

Nikita V. Vostrov

Tver State University

Tver, Russia

Grigory N. Pestov

National Research University of Electronic Technology, Zelenograd

Moscow, Russia

Alexander V. Solnyshkin

Tver State University

Email: a.solnyshkin@mail.RUS
Tver, Russia

References

  1. Zouraraki, O. 2x2 bismuth-oxide-fiber based crossbar switch for all-optical switching architectures / O. Zouraraki, P. Bakopoulos, K. Vyrsokinos, H. Avramopoulos // Optical Network Design and Modeling. ONDM 2007. In: Lecture Notes in Computer Science. - 2007. - V. 4534. - P. 21-28. doi: 10.1007/978-3-540-72731-6_3.
  2. Wu, Y. Optical crossbar elements used for switching networks / Y. Wu, L. Liu, Z. Wang // Applied Optics.- 1994. - V. 33. - I. 2. - P. 175-178. doi: 10.1364/AO.33.000175.
  3. Kätelhön, E. Nanocavity crossbar arrays for parallel electrochemical sensing on a chip / E. Kätelhön, D. Mayer, M. Banzet et al. // Beilstein Journal of Nanotechnology. - 2014. - V. 5. - P. 1137-1143. doi: 10.3762/bjnano.5.124.
  4. Kim, H. 4K-memristor analog-grade passive crossbar circuit / H. Kim, M.R. Mahmoodi, H Nili, D.B. Strukov // Nature Communications. - 2021. -V. 12. - Art. № 5198. - 11 p. doi: 10.1038/s41467-021-25455-0.
  5. Solnyshkin, A.V. Dynamic pyroelectric response of composite based on ferroelectric copolymer of poly(vinylidene fluoride-trifluoroethylene) and ferroelectric ceramics of barium lead zirconate titanate / A.V. Solnyshkin, I. M. Morsakov, A. A. Bogomolov et al. // Applied Physics A. - 2015. - V. 121. - I. 1.- P. 311-316. doi: 10.1007/s00339-015-9446-z.
  6. Badano, L.P. The clinical benefits of adding a third dimension to assess the left ventricle with echocardiography / L.P. Badano // Scientifica. - 2014. -V. 2014. - Art. № 897431 - 18 p. doi: 10.1155/2014/897431.
  7. Hurrell, A. A two-dimensional hydrophone array using piezoelectric PVDF / A. Hurrell, F. Duck // IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. - 2000. - V. 47. - I. 6. - P. 1345-1353. doi: 10.1109/58.883523.
  8. Hammes, P.C.A. A pyroelectric matrix sensor using PVDF on silicon containing FET readout circuitry / P.C.A. Hammes, P.P.L. Regtien, P.M. Sarro // Sensors and Actuators A: Physical. - 1993. -V. 37-38. - P. 290-295. doi: 10.1016/0924-4247(93)80049-M.
  9. Furukawa, T. Ferroelectric properties of vinylidene fluoride copolymers / T. Furukawa // Phase Transitions. - 1989. - V.18. - I. 3-4. - P. 143-211. doi: 10.1080/01411598908206863.
  10. Nalwa, H.S. Recent development in ferroelectric polymers / H.S. Nalwa // Journal of Macromolecular Science, Part C. 1991. - V. 31. - I. 4. - P. 341-432. doi: 10.1080/15321799108021957.
  11. Belov, A.N. Electrical characterization of poly(vinylidene fluoride-trifluoroethylene) nanocrystals embedded in porous alumina matrix / A. N. Belov, I. L. Kislova, D. V. Loktev et al. // Journal of Advanced Dielectrics.- 2018. - V. 8. - I. 1. - Art. № 1820001. - 5 p. doi: 10.1142/S2010135X18200011.
  12. Roopaa, T.S. Development and characterization of PVDF thin films for pressure sensors / T.S. Roopaa, H.N. Narasimha Murthy, V.V. Praveen Kumar, M. Krishna // Materials Today: Proceedings. - 2018. - V. 5.- I. 10. - Part 1. - P. 21082-21090. doi: 10.1016/j.matpr.2018.06.503.
  13. Aryanti, P. Preparation of polypropylene/PVDF composite membrane by dip-coating method / P. Aryanti, G. Trilaksono, A. Hotmaida et al. // IOP Conference Series: Materials Science and Engineering. - 2021.- V.1115. - Art. № 012028. - 9 p. doi: 10.1088/1757-899X/1115/1/012028.
  14. He, S. Large-area atomic-smooth polyvinylidene fluoride Langmuir-Blodgett film exhibiting significantly improved ferroelectric and piezoelectric responses / S. He, M. Guo, Z. Dan et al. // Science Bulletin. - 2021.-V. 66. - I. 11. - P. 1080-1090. doi: 10.1016/j.scib.2021.02.004.
  15. Naber, R.C.G. High-performance solution-processed polymer ferroelectric field-effect transistors / R.C.G. Naber, C. Tanase, P.W.M. Blom et al.// Nature Materials. - 2005. - V. 4. - P. 243-248. doi: 10.1038/nmat1329.
  16. Xu, H. Fabrication and properties of solution processed all polymer thin-film ferroelectric device / H. Xu, X. Fang, X. Liu et al. // Journal of Applied Polymer Science. - 2011. - V. 120. - I. 3. -P. 1510-1513. doi: 10.1002/app.33291.
  17. Hon, K.K.M. Direct writing technology-advances and developments / K.K.M. Hon, L. Li, I.M. Hutchings // CIRP Annals. - 2008. - V. 57. - I. 2. - P. 601-620. doi: 10.1016/j.cirp.2008.09.006.
  18. Востров, Н.В. Исследование физических свойств тонких пленок ПВДФ, изготовленных методом 4D-печати / Н.В. Востров, А.В. Солнышкин, И.М. Морсаков и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2022. - Вып. 14. - C. 561-571. doi: 10.26456/pcascnn/2022.14.561.
  19. Haque, R.I. Inkjet printing of high molecular weight PVDF-TrFE for flexible electronics / R.I. Haque, R. Vié, M. Germainy et al. // Flexible and Printed Electronics. - 2016. - V. 1. - № 1. - Art. № 015001. - 12 p. doi: 10.1088/2058-8585/1/1/015001.
  20. He, L. Electrohydrodynamic pulling consolidated high-efficiency 3D Printing to architect unusual self-polarized β-PVDF arrays for advanced piezoelectric sensing / L. He, J. Lu, C. Han et al. // Small. - 2022. - V. 18. - I. 15. - Art. № 2200114. - 10 p. doi: 10.1002/smll.202200114.
  21. Demidov, Y.A. 2D-printing features of metal, semiconductor and insulator local layers on substrate / Y.A. Demidov, G.N. Pestov, I.V. Sagunova et al. // 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 27-30 January 2020, St. Petersburg and Moscow: proceedings. - St. Petersburg, Moscow, IEEE, 2020. - P. 2127-2130. doi: 10.1109/EIConRus49466.2020.9039339.
  22. Omote, K. Temperature dependence of elastic, dielectric, and piezoelectric properties of "single crystalline" films of vinylidene fluoride trifluoroethylene copolymer / K. Omote, H. Ohigashi, K. Koga. // Journal of Applied Physics. - 1997. - V. 81. - I. 6. - P. 2760-2769. doi: 10.1063/1.364300.
  23. Hu, X. Enhanced piezoelectric coefficient of PVDF-TrFE films via in situ polarization / X. Hu, M. You, N. Yi et al. // Frontiers in Energy Research. - 2021. - V. 9. - Art. № 621540. - 7 p. doi: 10.3389/fenrg.2021.621540.
  24. Solnyshkin, A.V. Pyroelectric effect and piezoelectric properties of composites based on ferroelectric copolymer of poly(vinylidene fluoride-trifluoroethylene) and deuterated triglycine sulfate / A.V. Solnyshkin, I.M. Morsakov, A.I. Zavjalov et al. // Ferroelectrics. - 2023. - V. 612. - I. 1. - P. 137-143. doi: 10.1080/00150193.2023.2211299.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).