SURFACE MELTING IN NANOPARTICLES AND NANOSYSTEMS. 1. REGULARITIES AND MECHANISMS OF SURFACE MELTING OF MACROSCOPIC PHASES AND NANOPARTICLES

Cover Page

Cite item

Full Text

Abstract

Being the first part of a two-part series, published in this issue of the journal, this paper combines a brief overview of theoretical and experimental studies, as well as the results of atomistic simulations of surface melting in bulk bodies and nanoparticles with presentation of our own molecular dynamics results. We have studied the patterns and mechanisms of surface melting in metal nanoparticles (gold, silver, copper, lead and nickel). The patterns and mechanisms of this phenomenon were studied in most detail on gold and silver nanoparticles. It has been established that the effect of surface premelting is characteristic for nanoparticles of all the above metals, although with decreasing particle size this effect manifests itself to a lesser extent. In addition, our molecular dynamics results do not confirm theoretical predictions of some authors about the existence of a quite definite characteristic (critical) radius of nanoparticles, below which the effect of surface melting is completely absent.

About the authors

Vladimir M. Samsonov

Tver State University

Email: samsonoff@inbox.RUS
Tver, Russia

Igor V. Talyzin

Tver State University

Tver, Russia

Sergey A. Vasilyev

Tver State University

Tver, Russia

Vladimir V. Puitov

Tver State University

Tver, Russia

References

  1. Dash, J.G. Surface melting / J.G. Dash // Contemporary Physics. - 1989. - V. 30. - I. 2. - P. 89-100. doi: 10.1080/00107518908225509.
  2. Dash, J.G. History of the search for continuous melting / J.G. Dash // Reviews of Modern Physics. - 1999.- V. 71. - I. 5. - P. 1737-1743. doi: 10.1103/RevModPhys.71.1737.
  3. Базаров, И.П. Термодинамика. Учебник для вузов. 4-е изд., перераб. и доп. / И.П. Базаров.- М.: Высшая школа, 1991. - 376 с.
  4. Ландау, Л.Д. Теоретическая физика: в 10 т. Т. 5. Ч. 1: Статистическая физика. Часть 1. / Л.Д. Ландау, Е.М. Лифшиц. - М.: Физматлит, 2002, 616 с.
  5. Лифшиц, Е.М. Избранные труды. Физика реальных кристаллов и неупорядоченных систем / Е.М. Лифшиц. - М.: Наука, 1987. - С. 407-410.
  6. Faraday, M. Faraday's first public report of his work on the subject was in a lecture at the Royal Institution in in the Athenaeum (1850) / M. Faraday // Faraday's Diary. - London: Bell & Sons, 1933. - V. 4. - P. 79-81.
  7. Thomson, J. Note oil Professor Faraday's recent experiments on regelation / J. Thomson // Proceedings of the Royal Society of London. - 1861. - V. 11. - P. 198-204. doi: 10.1098/rspl.1860.0041.
  8. Dash, J.G. The physics of premelted ice and its geophysical consequences / J.G. Dash, A.W. Rempel, J.S. Wettlaufer // Reviews of Modern Physics. - 2006. - V. 78. - I. 3. - P. 695-741. doi: 10.1103/RevModPhys.78.695.
  9. Makkonen, L. Surface melting of ice / L. Makkonen // The Journal of Physical Chemistry B. - 1997.- V. 101. - I. 32. - P. 6196-6200. doi: 10.1021/jp963248c.
  10. Murata, K. Thermodynamic origin of surface melting on ice crystals / K. Murata, H. Asakawa, K. Nagashima, G. Sazaki // PNAS. - 2016. - V. 113. - I. 44. - P. E6741-E6748. doi: 10.1073/pnas.1608888113.
  11. Limmer, D.T. Closer look at the surface of ice / D.T. Limmer // PNAS. - 2016. - V. 113. - I. 44.- P. 12347-12349. doi: 10.1073/pnas.1615272113.
  12. Zhu, D.-M. Surface melting and roughening of adsorbed argon films / D.-M. Zhu, J.G. Dash // Physical Review Letters. - 1986. - V. 57. - I. 23. - P. 2959-2962. doi: 10.1103/PhysRevLett.57.2959.
  13. Frenken, J.W.M. Observation of surface melting / J.W.M. Frenken, J.F. van der Veen // Physical Review Letters. - 1985. - V. 54. - I. 2. - P. 134-137. doi: 10.1103/PhysRevLett.54.134.
  14. Frenken, J.W.M. Observation of surface-initiated melting / J.W.M. Frenken, P.M.J. Marée, J.F. van der Veen // Physical Review B. - 1986. - V. 34. - I. 11. - P. 7506-7516. doi: 10.1103/physrevb.34.7506.
  15. Frenken, J.W.M. Self-diffusion at a melting surface observed by He scattering / J.W.M. Frenken, J.P. Toennies, Ch. Wöll // Physical Review Letters. - 1988. - V. 60. - I. 17. - P. 1727-1730. doi: 10.1103/physrevlett.60.1727.
  16. Pluis, B. Crystal-face dependence of surface melting / B. Pluis, A.W.D. van der Gon, J.W.M. Frenken, J.F. van der Veen // Physical Review Letters. - 1987. - V. 59. - I. 23. P. 2678-2681. doi: 10.1103/physrevlett.59.2678.
  17. Prince, K.C. Anisotropy of the order-disorder phase transition on the Pb(110) surface / K.C. Prince, U. Breuer, H.P. Bonzel // Physical Review Letters. - 1988. - V. 60. - I. 12. - P. 1146-1149. doi: 10.1103/physrevlett.60.1146.
  18. Fuoss, P.H. X-ray scattering studies of the Si-SiO2 interface / P.H. Fuoss, L.J. Norton, S. Brennan, A. Fischer-Colbrie // Physical Review Letters. - 1988. - V. 60. - I. 7. - P. 600-603. doi: 10.1103/physrevlett.60.600.
  19. van der Veen, J.F. Surface melting / J.F. van der Veen, B. Pluis, A. W. Denier van der Gon // Chemistry and Physics of Solid Surfaces VII; ed. by R. Vanselow, R. Howe. - Berlin, Heidelberg: Springer, 1988. - P. 455-490. doi: 10.1007/978-3-642-73902-6_16.
  20. Peters, К.F. Melting of Pb nanocrystals / К.F. Peters, J.В. Cohen, Y.-W. Chung // Physical Review B.- 1998. - V. 57. - I. 21. - P. 13430-13438. doi: 10.1103/physrevb.57.13430.
  21. Kofman, R. Melting of clusters approaching 0D / R. Kofman, P. Cheyssac, Y. Lereah, A. Stella // The European Physical Journal D. - 1999. - V. 9. - I. 1. - P. 441-444. doi: 10.1007/s100530050475.
  22. Losurdo, M. Thermally stable coexistence of liquid and solid phases in gallium nanoparticles / M. Losurdo, A. Suvorova, S. Rubanov et al. // Nature Materials. - 2016. - V. 15. - I. 9. - P. 995-1002. doi: 10.1038/nmat4705.
  23. Wang, Z.L. Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals / Z.L. Wang, J.M. Petroski, T.C. Green, M. A. El-Sayed // The Journal of Physical Chemistry B. - 1998. - V. 102. - I. 32. - P. 6145-6151. doi: 10.1021/jp981594j.
  24. Foster, D.M. Atomic-resolution imaging of surface and core melting in individual size-selected Au nanoclusters on carbon / D.M. Foster, T. Pavloudis, J. Kioseoglou, R.E. Palmer // Nature Communications.- 2019. - V. 10 - I. 1. - Art. № 2583. - 8 p. doi: 10.1038/s41467-019-10713-z.
  25. Kryshtal, A. Direct imaging of surface melting on a single Sn nanoparticle / A. Kryshtal, S. Bogatyrenko, O. Khshanovska // Nano Letters. - 2023. - V. 23. - I. 14. - P. 6354-6359. doi: 10.1021/acs.nanolett.3c00943.
  26. Vegh, A. Modelling surface melting of macro-crystals and melting of nano-crystals for the case of perfectly wetting liquids in one-component systems using lead as an example / A. Vegh, G. Kaptay // Calphad. - 2018.- V. 63. - P. 37-50. doi: 10.1016/j.calphad.2018.08.007.
  27. Бойнович, Л.Б. Дальнодействующие поверхностные силы и их роль в развитии нанотехнологии/ Л.Б. Бойнович // Успехи химии. - 2007. - Т. 76. - Вып. 5. - С. 510-528. doi: 10.1070/RC2007v076n05ABEH003692.
  28. Levitas, V.I. Size and mechanics effects in surface-induced melting of nanoparticles / V.I. Levitas, K. Samani // Nature Communications. - 2011. - V. 2. - I. 1. - Art. № 284. - 6 p. doi: 10.1038/ncomms1275.
  29. Гусев, А.И. Нанокристаллические материалы: методы получения и свойства / А.И. Гусев.- Екатеринбург: УрО РАН, 1998. - 115 c.
  30. Родунер, Э. Размерные эффекты в наноматериалах / Э. Родунер. - М.: Техносфера, 2010. - 352 с.
  31. Nanda, K.K. Size-dependent melting of nanoparticles: Hundred years of thermodynamic model / K.K. Nanda // Indian Academy of Sciences. - 2009. - V. 72. - I. 4. - P. 617-628. doi: 10.1007/s12043-009-0055-2.
  32. Samsonov, V.M. Melting temperature and binding energy of metal nanoparticles: size dependences, interrelation between them, and some correlations with structural stability of nanoclusters / V.M. Samsonov, S.A. Vasilyev, K.K. Nebyvalova et al. // Journal of Nanoparticle Research. - 2020. - V. 22. - I. 8. - Art. № 247. - 15 p. doi: 10.1007/s11051-020-04923-6.
  33. Сдобняков, Н.Ю. Изучение термодинамических и структурных характеристик наночастиц металлов в процессах плавления и кристаллизации: теория и компьютерное моделирование: монография / Н.Ю. Сдобняков, Д.Н. Соколов. - Тверь: Тверcкой государственный университет, 2018. - 176 с.
  34. Сдобняков, Н.Ю. О взаимосвязи размерных зависимостей температур плавления и кристаллизации наночастиц металлов / Н.Ю. Сдобняков, С.В. Репчак, В.М. Самсонов и др. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. - 2011. - № 5. - С. 109-112.
  35. Jiang, Q. Size effect on the phase stability of nanostructures / Q. Jiang, C.C. Yang // Current Nanoscience. - 2008. - V. 4. - I. 2. - P. 179-200. doi: 10.2174/157341308784340949.
  36. Chernyshev, A.P. Effect of nanoparticle size on the onset temperature of surface melting / A.P. Chernyshev // Materials Letters. - 2009. - V. 63. - I. 17. - P. 1525-1527. doi: 10.1016/j.matlet.2009.04.009.
  37. Lee, Ch. Calculating the threshold energy of the pulsed laser sintering of silver and copper nanoparticles / Ch. Lee, J.W. Hahn // Journal of the Optical Society of Korea. - 2016. - V. 20. - I. 5. - P. 601-606. doi: 10.3807/JOSK.2016.20.5.601.
  38. Alarifi, H.A. Determination of complete melting and surface premelting points of silver nanoparticles by molecular dynamics simulation / H.A. Alarifi, M. Atiş, C. Özdoğan et. al. // The Journal of Physical Chemistry C. - 2013. - V. 117. - I. 23. - P. 12289-12298. doi: 10.1021/jp311541c.
  39. Samsonov, V.M. On surface pre-melting of metallic nanoparticles: molecular dynamics study / V.M. Samsonov, I.V. Talyzin, S.A. Vasilyev et al. // Journal of Nanoparticle Research. - 2023. - V. 25. - I. 6. - Art. № 105. - 15 p. doi: 10.1007/s11051-023-05743-0.
  40. Thompson, A. P. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales / A. P. Thompson, H. M. Aktulga, R. Berger et. al. // Computer Physics Communications. - 2022. - V. 271. - Art. № 108171. - 34 p. doi: 10.1016/j.cpc.2021.108171.
  41. Adams, J.B. Self-diffusion and impurity diffusion of FCC metals using the 5-frequency model and the Embedded Atom Method / J.B. Adams, S.M. Foiles, W.G. Wolfer // Journal of Materials Research. - 1989.- V. 4. - I. 1. - P. 102-112. doi: 10.1557/JMR.1989.0102.
  42. Zhou, X.W. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers / X.W. Zhou, R.A. Johnson, H.N.G. Wadley // Physical Review B. - 2004. - V. 69. - I. 14. - Art. № 144113. - 10 p. doi: 10.1103/PhysRevB.69.144113.
  43. Foiles, S.M. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys / S.M. Foiles, M.I. Baskes, M.S. Daw // Physical Review B. - 1986. - V. 33. - I. 12. - P. 7983-7991. doi: 10.1103/physrevb.33.7983.
  44. Qi Y. Melting and crystallization in Ni nanoclusters: The mesoscale regime / Y. Qi, T. Çağin, W.L. Johnson, W. A. Goddard III // The Journal of Chemical Physics. - 2001. - V. 115. - I. 1. - P. 385-394. doi: 10.1063/1.1373664.
  45. Samsonov, V.M. Molecular dynamics study of the melting and crystallization of nanoparticles / V.M. Samsonov, S.S. Kharechkin, S.L. Gafner et. al. // Crystallography Reports. - 2009. - V. 54. - I. 3.- P. 526-531. doi: 10.1134/S1063774509030250.
  46. Samsonov, V.M. Comparative molecular dynamics study of melting and crystallization of Ni and Au nanoclusters / V.M. Samsonov, A.G. Bembel, O.V. Shakulo, S.A. Vasilyev. // Crystallography Reports. - 2014. - V. 59. - I. 4. - P. 580-585. doi: 10.1134/S1063774514040166.
  47. Gafner, S.L. Structural transitions in small nickel clusters / S.L. Gafner, L.V. Redel', Z.V. Goloven'ko et. al. // JETP Letters. - 2009. - V. 89. - I. 7. - P. 364-369. doi: 10.1134/s0021364009070121.
  48. Васильев, С.А. Молекулярно-динамическое моделирование термоиндуцированных структурных превращений в наночастицах металлов подгруппы меди: дисс.... канд. физ.-мат. наук: 1.3.8. / Васильев Сергей Александрович. - Тверь: Тверской государственный университет, 2021.- 110 с.
  49. Stukowski, A. Structure identification methods for atomistic simulations of crystalline materials / A. Stukowski // Modelling and Simulation in Materials Science and Engineering. - 2012. - V. 20. - I. 4.- Art. № 045021. 15 p. doi: 10.1088/0965-0393/20/4/045021.
  50. Polak,W. Efficiency in identification of internal structure in simulated monoatomic clusters: Comparison between common neighbor analysis and coordination polyhedron method / W. Polak // Computational Materials Science. - 2022. - V. 201. - Art. № 11088. - 7 p. doi: 10.1016/j.commatsci.2021.110882.
  51. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO - the open visualization tool / A. Stukowski // Modelling and Simulation in Materials Science and Engineering. - 2010. - V. 18. - I. 1. - Art. № 015012. - 7 p. doi: 10.1088/0965-0393/18/1/015012.
  52. Chang, J. Surface and bulk melting of small metal clusters / J. Chang, E. Johnson // Philosophical Magazine. - 2005. - V. 85. - I. 30. - P. 3617-3627. doi: 10.1080/14786430500228663.
  53. Tian, L. Surface melting of a colloidal glass / L. Tian, C. Bechinger // Nature Communications. - 2022.- V. 13. - I. 1. - Art. № 6605. - 5 p. doi: 10.1038/s41467-022-34317-2.
  54. Surface melting of glass. Physicists make a surprising discovery when they detect surface melting in glasses. - Режим доступа: www.url: www.sciencedaily.com/releases/2022/11/221104113506.htm. - 15.07.2023.
  55. Bernal, J.D. The Bakerian lecture, 1962. The structure of liquids / J.D. Bernal // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. - 1964. - V. 280. - I. 1382. - P. 299-322. doi: 10.1098/rspa.1964.0147.
  56. Bernal, J.D. 1960. Packing of spheres: co-ordination of randomly packed spheres / J.D. Bernal, J. Mason // Nature. - 1960. - V. 188. - I. 4754. - P. 910-911. doi: 10.1038/188910a0.
  57. Берлин, А.А. Имитация свойств твердых тел и жидкостей методами компьютерного моделирования / А.А. Берлин, Н.К. Балабаев // Соросовский образовательный журнал. Физика. - 1997. - № 11. - C. 85-92.
  58. Wu, T.-C. Microstructure and surface texture driven improvement in in-vitro response of laser surface processed AZ31B magnesium alloy / T.-C. Wu, S.S. Joshi, Y.H. Ho et al. // Journal of Magnesium and Alloys.- 2021. - V. 9. - I. 4. - P. 1406-1418 doi: 10.1016/j.jma.2020.11.002.
  59. Самсонов В.М. Поверхностное плавление в наночастицах и наносистемах. 2. Научные и нанотехнологические аспекты роли поверхностного плавления в наночастицах и наносистемах / В.М. Самсонов, С.А. Васильев, И.В. Талызин, В.В. Пуйтов // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов - 2023. - Вып. 15. - C. 571-588. doi: 10.26456/pcascnn/2023.15.571.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).