Short Communication PHASE-CHANGE MEMORY CELLS BASED ON NANOPARTICLES ALLOY Ag-Au

Cover Page

Cite item

Full Text

Abstract

Phase-change random access memory is an excellent candidate for next-generation non-volatile memory technology. In order to meet the needs of the industry, its capacity must be improved, for which it is necessary to reduce the volume of a unit cell. Proceeding from this, in this work, the possibility of using nanoparticles of the Ag - Au binary alloy as individual phase-change random access memory cells was evaluated by computer simulation. The method of molecular dynamics with a modified tight binding potential was used. For this, an analysis was made of the crystallization processes of these nanoparticles with a diameter of 2,0 to 8,0 nm with different rates of thermal energy removal. It was shown that the addition of gold to the composition makes it possible to solve the problem of the complex reproduction of the amorphous structure, which is characteristic of pure Ag nanoparticles. Due to this, stable switching between the amorphous and crystalline phases can be achieved at a nanocluster diameter of ≥4 nm and ≥6 nm with an Au content in the composition of ≥40% and ≥20%, respectively, which is significantly lower than the cut-off value of 10 nm characteristic of silver nanoparticles.

About the authors

Daria A. Ryzhkova

Katanov Khakass State University

Email: bashkova.daria@yandex.RUS
Abakan, Russia

References

  1. Jones, R.O. Rationalizing the dominance of Ge/Sb/Te alloys / R. O. Jones // Physical Review B. - 2020.- V. 101. - I. 2. - P. 024103-1-024103-11. doi: 10.1103/PhysRevB.101.024103.
  2. Le Gallo, M. An overview of phase-change memory device physics / M. Le Gallo, A. Sebastian // Journal of Physics D: Applied Physics. - 2020. - V. 53. - № 21. - Art. № 213002. - 27 p. doi: 10.1088/1361-6463/ab7794.
  3. Navarro, G. Phase-change memory: performance, roles and challenges / G. Navarro, G. Bourgeois, J. Kluge, et al. // 2018 IEEE International Memory Workshop (IMW), Kyoto, Japan, 13-16 May 2018. - Kyoto: IEEE Publ. - 2018. - P. 1-4, doi: 10.1109/IMW.2018.8388845.
  4. Aryana, K. Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices / K. Aryana, J.T. Gaskins, J. Nag et al. // Nature Communications. - 2021. - V. 12. - Art. № 774. - 11 p. doi: 10.1038/s41467-020-20661-8.
  5. Liu, Y.-T. High-throughput screening for phase-change memory materials / Y.-T. Liu, X.-B. Li, H. Zheng et al. // Advanced Functional Materials. - 2021. - V. 31. - I. 21. - Art.№ 2009803. - 11 p. doi: 10.1002/adfm.202009803.
  6. Xu, M. Polyamorphism in K2Sb8Se13 for multi-level phase-change memory / M. Xu, Ch. Qiao, K.-H. Xue et al. // Journal of Materials Chemistry C. - 2020. - V. 8. - I. 19. - P. 6364-6369. doi: 10.1039/D0TC01089H.
  7. Rapallo, A. Global optimization of bimetallic cluster structures. I. Size-mismatched Ag-Cu, Ag-Ni, and Au-Cu systems / A. Rapallo, G. Rossi, R. Ferrando et al. // The Journal of Chemical Physics. - 2005. - V. 122.- I. 19. - P. 194308-1-194308-13. doi: 10.1063/1.1898223.
  8. Pang, T. An introduction to computational physics / T. Pang. - 2nd ed. - Cambridge, New York: University Press, 2006. - xv, 385 p.
  9. XMakemol - A program for visualizing atomic and molecular systems. - Режим доступа: www.url: https://manpages.ubuntu.com/manpages/bionic/man1/xmakemol.1.html. - 15.04.2023.
  10. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO - the open visualization tool / A. Stukowski // Modelling and Simulation in Materials Science and Engineering. - 2010. - V. 18. - № 1.- Art. № 015012. - 7 p. doi: 10.1088/0965-0393/18/1/015012.
  11. Andersеn, H.C. Molecular dynamics simulations at constant pressure and/or temperature / H.C. Andersеn // The Journal of Chemical Physics. - 1980. - V. 72. - I. 4. - P. 2384-2393. doi: 10.1063/1.439486.
  12. Гафнер, Ю.Я. Оценка применимости малых наночастиц серебра в качестве ячеек РСМ памяти / Ю.Я. Гафнер, Д.А. Башкова, С.Л. Гафнер, Л.В. Редель // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2018. - Вып. 10. - С. 219-225. doi: 10.26456/pcascnn/2018.10.219.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).