SIMULATION OF THE DIELECTRIC RESPONSE OF PIEZOELECTRIC CERAMICS

Cover Page

Cite item

Full Text

Abstract

We have analyzed the complex permittivity of a porous (10 volume % of pores) sodium-lithium niobate ceramic with the results of computer simulation. The calculation was based on the Cole-Cole formula, which took into account the presence of various mechanisms of relaxation processes in the low-frequency (linear dispersion) and mid-frequency regions, an additional term from the Debye formula was added to take into account the mixed polarization, and a term taking into account the damping factor was added for resonant-type polarization. The simulation was carried out with and without the conductivity taken into account. To take into account the contribution of conductivity to the dynamic dielectric response, the expression σ* = (ε″ + iε′)ε0ω was used. It is shown that the linear part of the frequency dependence in the range from 50 Hz to 1 MHz is equally well described both with and without conductivity. At the same time, the behavior of the dielectric response of piezoelectric ceramics in the high-frequency region, where resonance effects are observed, and the low-frequency region, where volume-charge polarization predominates, is much better described taking into account the contribution of conductivity to the dielectric response of the system.

About the authors

Nataliya E. Malysheva

Military Academy of Air and Space Defence named after Marshal of the Soviet Union G.K. Zhukov

Tver, Russia

Ekaterina V. Dyakova

Tver State University

Tver, Russia

Olga V. Malyshkina

Tver State University

Email: olga.malyshkina@mail.RUS
Tver, Russia

References

  1. Jonscher, A.K. Universal relaxation law: a sequel to dielectric relaxation in solids / A.K. Jonscher. - London: Chelsea Dielectrics Press Limited, 1996. - 415 p.
  2. Jonscher, A.K. Dielectric relaxation in solids / A.K. Jonscher. - London: Chelsea Dielectrics Press Limited, 1983. - 400 p.
  3. Поплавко, Ю.М. Физика диэлектриков / Ю.М. Поплавко. - Киев: Вища школа, Головное изд-во, 1980. - 400 c.
  4. Jonscher, A.K. The physical origin of negative capacitance / A.K. Jonscher // Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics. - 1986. -V. 82. - I. 1. - P. 75-81. doi: 10.1039/F29868200075.
  5. Felix, A.A. Schottky-type grain boundaries in CCTO ceramics / A.A. Felix, M.O. Orlandi, J.A. Varela // Solid State Communications. - 2011. - V. 151. - I. 19. - P. 1377-1381. doi: 10.1016/j.ssc.2011.06.012.
  6. Kwok, H.L. Understanding negative capacitance effect using an equivalent resistor-capacitor circuit / H.L. Kwok // Physica Status Solidi C. - 2008. - V. 5. - I. 2. - P. 638-640. doi: 10.1002/pssc.200776806.
  7. Gavrilova, N.D. Negative dielectric permittivity of poly (acrylic acid) pressed pellets / N.D. Gavrilova, V.K. Novik, A.V. Vorobyev, I.A. Malyshkina // Journal of Non-Crystalline Solids. - 2016. - V. 452. - P. 1-8. doi: 10.1016/j.jnoncrysol.2016.08.015.
  8. Малышева, Н.Е. Диэлектрическая релаксация в керамике ниобата лития-натрия: дис. … канд. физ.-мат. наук: 1.3.8 / Малышева Наталья Евгеньевна. - Тверь: Тверской государственный университет, 2023. - 166 с.
  9. Megaw, H.D. The seven phases of sodium niobate / H.D. Megaw // Ferroelectrics. - 1974. - V. 7. - I. l.- P. 87-89. doi: 10.1080/00150197408237956.
  10. Dixon, C.A.L. Complex octahedral tilt phases in the ferroelectric perovskite system LixNa1-xNbO3 / C.A.L. Dixon, P. Lightfoot // Physical Review B. - 2018. - V. 97. - I. 22. - P. 224105-1-224105-9. doi: 10.1103/PhysRevB.97.224105.
  11. Малышкина, О.В. Релаксационные процессы в области структурных фазовых переходов на примере керамики на основе ниобата натрия / О.В. Малышкина, М. Али, Н.Е. Малышева, К.В. Пацуев // Физика твердого тела, - 2022. - T. 64. - Вып. 12. - C. 1960-1966. doi: 10.21883/FTT.2022.12.53649.461.
  12. Malysheva, N.E. Temperature dependences of dielectric characteristics of sodium-lithium niobate porous ceramics / N.E. Malysheva, O.V. Malyshkina // Ferroelectrics. - 2022. - V. 591. - I. 1. - P. 72-76. doi: 10.1080/00150193.2022.2041925.
  13. Debye, P. Polar molecules / P. Debye. - New York: The Chemical Catalog Company, Inc., 1929. - 172 p.
  14. Cole, K.S. Dispersion and absorption in dielectric. 1. Alternating currents characteristics / K.S. Cole, R.H. Cole // The Journal of Chemical Physics. - 1941. - V. 9. - I. 4. - P. 341-351. doi: 10.1063/1.1750906.
  15. Галиярова, Н.М. Медленная релаксация поляризации и особенности низкочастотного диэлектрического спектра триглицинсульфата в области фазового перехода / Н.М. Галиярова // Физика твердого тела. - 1989. - Т. 31. - Вып. 11. - С. 248-252.
  16. Kremer, F. Broadband dielectric spectroscopy / F. Kremer, A. Schönhals. - Berlin, Heidelberg: Springer, 2003. - XXI, 729 p. doi: 10.1007/978-3-642-56120-7.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).