MICRO AND NANOSIZED MATERIALS WITH HIGH ENTROPY

Cover Page

Cite item

Full Text

Abstract

The stability of high-entropy alloys, like equiatomic and non-equiatomic micro- and nanostructural ones, is relevant when creating stable multicomponent compositions with improved performance. The implementation of such materials is possible by mechanical alloying, magnetron sputtering, as well as by the electrochemical method using the «top-down and bottom-to-top» strategy at moderate temperatures < 200°C with controlled production of both micro-from 0,5 to 20 μm and nanoscale high-entropy alloys with particles from 2 to 10 nm. The well-studied «structure-property» relationship for classical alloys is not yet completely clear for nano-high-entropy alloys, but it is obvious that it is possible to form excellent mechanical characteristics by selecting chemical compositions and a special heat treatment regime. Regarding the chemical composition, requirements are imposed both on the main components and alloying additives. Preliminarily, not only compositions are selected, but also methods for the synthesis of high-entropy alloys, including ab initio (density functional theory), neural network prediction, and classical molecular dynamic simulation with possible conditions for the formation of model nano- high-entropy alloy samples, as well as derivative options. The resulting descriptions are compared with real methods of high-entropy alloys synthesis, for example, exposure to various synthetic media.

About the authors

Elmira D. Kurbanova

Institute of Metallurgy of the Ural Branch of the RAS

Email: kurbellya@mail.RUS
Yekaterinburg, Russia

Rimma M. Belyakova

Institute of Metallurgy of the Ural Branch of the RAS

Yekaterinburg, Russia

Valery A. Polukhin

Institute of Metallurgy of the Ural Branch of the RAS

Email: p.valery47@yandex.RUS
Yekaterinburg, Russia

References

  1. Polukhin, V.A. Dendrite-hardened amorphous and graphene-reinforced metal composites: Deformation mechanisms and strength characteristics / V.A. Polukhin, S.Kh. Estemirova, E.D. Kurbanova // AIP Conference Proceedings. - 2020. - V. 2315. - P. 050019-1-050019-5. doi: 10.1063/5.0036724.
  2. Zhou, S. Temperature dependent mechanical behavior of an Al0.5Co0.9FeNi2.5V0.2 high-entropy alloy/ S. Zhou, P.K. Liaw, Y. Xue, Y. Zhang // Applied Physics Letters. - 2021. - V. 119. - I. 12. - Art. № 121902. - 5 p. doi: 10.1063/5.0064821.
  3. Ma, Y. High-entropy energy materials: сhallenges and new opportunities / Y. Ma, Y. Ma, Q. Wang et al. // Energy & Environmental Science. - 2021. - V. 14. - I. 5. - P. 2883-2905. doi: 10.1039/D1EE00505G.
  4. Polukhin V.A. Characteristics of amorphous, nanocrystalline, and crystalline membrane alloys / V.A. Polukhin, N.I. Sidorov, E.D. Kurbanova, R.M. Belyakova // Russian Metallurgy (Metally). - 2022.-V. 2022. - I. 8. - P. 869-880. doi: 10.1134/S0036029522080122
  5. Pastukhov, E.A. Short order and hydrogen transport in amorphous palladium materials / E.A. Pastukhov, N.I. Sidorov, V.A. Polukhin, V.P. Chentsov // Defect and Diffusion Forum. - 2009. - V. 283-286. - P. 149-154. doi: 10.4028/ href='www.scientific.net/DDF.283-286.149' target='_blank'>www.scientific.net/DDF.283-286.149.
  6. Zhu, K. Improving hydrogen permeability and sustainability of Nb30Ti35Co35 eutectic alloy membrane by substituting Co using Fe / K. Zhu, X. Li, G. Liu et al. // International Journal of Hydrogen Energy. - 2020.- V. 45. - I. 55. - P. 30720-30730. doi: 10.1016/j.ijhydene.2020.08.101.
  7. Polukhin, V.A. Comparative analysis of termoscale effects, isomerization and stability of TM-nanoclusters (Pd,Ni,Fe) and Si in dependence on interatomic potentials. MD-simulations / V.A. Polukhin, E.D. Kurbanova, A.E. Galashev // EPJ Web of Conferences. - 2011. - V. 15: LAM14 - XIV Liquid and Amorphous Metals Conference. - Art. № 03002. - 3 p. doi: 10.1051/epjconf/20111503002.
  8. Feng, G. Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution / G. Feng, F.H. Ning, J. Song et al. // Journal of the American Chemical Society. - 2021.- V. 143. - I. 41. - P. 17117-17127. doi: 10.1021/jacs.1c07643.
  9. Zhang, C. Data-mining of in-situ TEM experiments: on the dynamics of dislocations in CoCrFeMnNi alloys/ C. Zhang, H. Song et al. // Acta Materialia. - 2022. - V. 241. - Art. № 118394. - 9 p. doi: 10.1016/j.actamat.2022.118394.
  10. Polukhin, V.A. Presolidification changes in the structural-dynamic characteristics of glass-forming metallic melts during deep cooling, vitrification, and hydrogenation / V.A. Polukhin, N.I. Sidorov, N.A. Vatolin // Russian Metallurgy (Metally). - 2019. - V. 2019. - I. 8. - P. 758-780. doi: 10.1134/S0036029519080123.
  11. Abdel-Aziz, A.B. Electrodeposition of lead and lead-tin alloy on copper using an eco-friendly methanesulfonate plating bath / A.B. Abdel-Aziz, A.A. El-Zomrawy, M.M.B. El-Sabbah, I.M. Ghayad // Journal of Materials Research and Technology. - 2022. - V. 18. - P. 2166-2174. doi: 10.1016/j.jmrt.2022.03.004.
  12. Белякова, Р.М. Анализ характеристик мембранных сплавов на основе Nb - Ni и V - Ni / Р.М. Белякова, Э.Д. Курбанова, В.А. Полухин // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2021. - Вып. 13. - С. 552-561. doi: 10.26456/pcascnn/2021.13.552.
  13. Hong, J.W. Ultrathin free-standing ternary-alloy nanosheets / J.W. Hong, Y. Kim, D.H. Wi et al. // Angewandte Chemie International Edition. - 2016. - V. 55. - I. 8. - P. 2753-2758. doi: 10.1002/anie.201510460.
  14. Liu, C. A lightweight strain glass alloy showing nearly temperature-independent low modulus and high strength / C. Liu, Y. Ji, J. Tang et al. // Nature Materials. - 2022. - V. 21. - P. 1003-1007. doi: 10.1038/s41563-022-01298-y.
  15. Santos, M.D. Effect of Ti/Si and Ti/TiN/Si interlayers on the structure, properties, and tribological behavior of an a-C film deposited onto a C17200 copper-beryllium alloy / M.D. Santos, N.K. Fukumasu, A.P. Tschiptschin et al. // Surface and Coatings Technology. - 2022. - V. 441. - Art. № 128561. - 17 p. doi: 10.1016/j.surfcoat.2022.128561.
  16. Yang, N. Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation / N. Yang, Z. Zhang, B. Chen et al. // Advanced Materials. - 2017. - V. 29. - I. 29.- Art. № 1700769. - 19 p. doi: 10.1002/adma.201700769.
  17. Zhao, H. Rapid and large-scale synthesis of ultra-small immiscible alloy supported catalysts / H. Zhao, D. Zhang, Y. Yuan et al. // Applied Catalysis B: Environmental. - 2022. - V. 304. - Art. № 120916. - 21 p. doi: 10.1016/j.apcatb.2021.120916.
  18. Qin,Y.-C. Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion / Y.-C. Qin, F.-Q. Wang, X.-M. Wang et al. // Rare Metals. - 2021. - V. 40. - I. 9. - P. 2354-2368. doi: 10.1021/acsmaterialslett.9b00414.
  19. Li, H. Nano high-entropy materials: Synthesis strategies and catalytic applications / H. Li, H. Zhu, S. Zhang et al. // Small Structures. - 2020. - V. 1. - I. 2. - Art. № 2000033. - 45 p. doi: 10.1002/sstr.202000033.
  20. You, J. Research of high entropy alloys as electrocatalyst for oxygen evolution reaction / J. You, R. Yao, W. Ji, Z. Wang // Journal of Alloys and Compounds. - 2022. - V. 908. - Art. № 164669. - 25 p. doi: 10.1016/j.jallcom.2022.164669.
  21. Wang, Y. Recent status and challenging perspective of high entropy oxides for chemical catalysis / Y. Wang, J. Mi, Z.-S. Wu // Chem Catalysis. - 2022. - V. 2. - I. 7. - P. 1624-1656. doi: 10.1016/j.checat.2022.05.003.
  22. Takeuchi, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element / A. Takeuchi, A. Inoue // Materials Transactions. - 2005. - V. 46. - I. 12. - P. 2817-2829. doi: 10.2320/matertrans.46.2817.
  23. Luan, H. Highentropy induced a glass-to-glass transition in a metallic glass / H. Luan, X. Zhang, H. Ding et al. // Nature Communications. - 2022. - V. 13. - Art. № 2183. - 11 p. doi: 10.1038/s41467-022-29789-1.
  24. Yao, Y. Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts / Y. Yao, Z. Liu, P. Xie et al. // Sciences Advamces. - 2020. - V. 6. - № 11. - Art. № eaaz0510.- 10 p. doi: 10.1126/sciadv.aaz0510.
  25. Chen, Y. Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles / Y. Chen, X. Zhan, S.L.A. Bueno et al. // Nanoscale Horizons. - 2021. - V. 6. - I. 3. - P. 231-237. doi: 10.1039/D0NH00656D.
  26. Kipkirui, N.G. HiPIMS and RF magnetron sputtered Al0.5CoCrFeNi2Ti0.5 HEA thin-film coatings: synthesis and characterization / N.G. Kipkirui, T.T. Lin, R.S. Kiplangat et al. // Surface and Coatings Technology. - 2022. - V. 449. - Art. № 128988. - 24 p. doi: 10.1016/j.surfcoat.2022.128988.
  27. Katiyar, N.K. Electrooxidation of hydrazine utilizing high-entropy alloys: Assisting the oxygen evolution reaction at the thermodynamic voltage / N.K. Katiyar, S. Dhakar, A. Parui et al. // ACS Catalysis. - 2021.- V. 11. - I. 22. - P. 14000-14007. doi: 10.1021/acscatal.1c03571.
  28. Polukhin, V.A. Hydrogenation of deeply cooled melts as an effective method for amorphization and control of the structure of alloys based on d-metals / V.A. Polukhin, E.D. Kurbanova, R.M. Belyakova // Metal Science and Heat Treatment. - 2021. - V. 63. - I. 1-2. - P. 3-10. doi: 10.1007/s11041-021-00639-z.
  29. Wu, Q. High entropy alloys: From bulk metallic materials tonanoparticles / Q. Wu, Z. Wang, F. He et al. // Metallurgical and Materials Transactions A. - 2018. - V. 49. - I. 10. - P. 4986-4990. doi: 10.1007/s11661-018-4802-1.
  30. Liu, H. A freestanding nanoporous NiCoFeMoMn high-entropy alloy as an efficient electrocatalyst for rapid water splitting / H. Liu, H. Qin, J. Kang et al. // Chemical Engineering Journal. - 2022. - V. 435. - Part 1.- Art. № 134898. - 27 p. doi: 10.1016/j.cej.2022.134898.
  31. Li, S. Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction / S. Li, X. Tang, H. Jia et al. // Journal of Catalysis. - 2020. - V. 383. - P. 164-171. doi: 10.1016/j.jcat.2020.01.024.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).