EFFECT OF BISMUTH CONTENT ON THE STRUCTURAL AND ELECTRONIC PROPERTIES OF GaAs1-yBiy: FIRST PRINCIPLES CALCULATIONS

Cover Page

Cite item

Full Text

Abstract

A theoretical study of the effect of bismuth concentration on the structural and electronic properties of the GaAs 1- y Biy solid solution is presented using the density functional theory in the VASP 5.4.4 software package. The results of the study showed that the fundamental band gap GaAs 1- y Biy increase in the concentration of bismuth leads to an increase in the GaAs 1- y Biy lattice constant, which causes internal asymmetry and a decrease in the Ga-Bi bond length. It has been shown that, with an increase in the number of Bi atoms substituting As atoms, a distortion of the position of neighboring Ga atoms and a decrease in the Ga - As bond length are observed at the sites of the crystal lattice. It has been established that these changes are due to the influence of the neighboring Bi atom, which affects the Ga - Bi bond length and reduces its length down to 2,6133 Å at y equal to 12,5%. The angle between the Ga - Bi and Ga - Bi bonds, on the contrary, increases with increasing Bi concentration and can reach a maximum value of 110,9256°. The combination of such structural changes in the crystal lattice of GaAs 1- y Biy further lead to the emergence of potential defects in the form of clustering of Bi atoms or displacement of the Bi atom in the position of the interstitium. It has been established that supercells have the most stable configuration. GaAs 1- y Biy with a concentration of Bi atoms up to 12,5%. The band gap of the GaAs 1- y Biy solid solution decreases from 1,283 eV to 0,712 eV with increasing bismuth concentration from 1,85 mol.% to 12,5 mol.%. The band gap values obtained are, on the whole, close to known literature data. This shows that the direct band gap of this alloy covers the spectral region from the near infrared to the infrared range.

About the authors

Oleg V. Devitsky

Federal Research Centre The Southern Scientific Centre of The RAS

Email: v2517@rambler.RUS
Rostov-on-Don, Russia)North Caucasus Federal University (Stavropol, Russia

References

  1. Marko, I.P. Progress toward III-V bismide alloys for near- and midinfrared laser diodes / I.P. Marko, S.J. Sweeney // IEEE Journal of Quantum Electronics. - 2017. - V. 23. - I. 6. - Art. № 1501512. - 12 p. doi: 10.1109/JSTQE.2017.2719403.
  2. Sweeney, S.J. Bismide-nitride alloys: promising for efficient light emitting devices in the nearand mid-infrared / S.J. Sweeney, S.R. Jin // Journal Applied Physics. - 2013. - V. 113. - I. 4. - P. 043110-1-043110-6. doi: 10.1063/1.4789624.
  3. Rockett, T.B.O. Influence of growth conditions on the structural and opto-electronic quality of GaAsBi / T.B.O. Rockett, R.D. Richards, Y. Gu et al. // Journal of Crystal Growth. - 2017. - V. 477. - P. 139-143. doi: 10.1016/j.jcrysgro.2017.02.004.
  4. Pashchenko, A.S. Structure and morphology of GaInAsP solid solutions on GaAs substrates grown by pulsed laser deposition / A.S. Pashchenko, O.V. Devitsky, L.S. Lunin et al.// Thin Solid Films. - 2022. - V. 743. - Art. № 139064. - 8 p. doi: 10.1016/j.tsf.2021.139064.
  5. Lunin, L.S. Pulsed laser deposition of AlxGa1-xAs and GaP thin films onto Si substrates for photoelectric converters / L.S. Lunin, M.L. Lunina, O.V. Devitsky et al. // Semiconductor. - 2017. - V. 51. - I. 3.- P. 387-391. doi: 10.1134/S1063782617030174.
  6. Zhang, Y. Similar and dissimilar aspects of III-V semiconductors containing Bi versus N / Y. Zhang, A. Mascarenhas // Physical Review B. - 2005. - V. 71. - I. 15. - P. 155201-1-155201-4. doi: 10.1103/PhysRevB.71.155201.
  7. Sweeney, S.J. Bismide-based photonic devices for near- and mid-infrared applications / S.J. Sweeney, I.P. Marko, S.R. Jin et al. // In: Bismuth-Containing Compounds. Springer Series in Materials Science. - New York: Springer, 2013 - V. 186. - P. 29-53. doi: 10.1007/978-1-4614-8121-8_2.
  8. Wang, L. Novel dilute bismide, epitaxy, physical properties and device application / L. Wang, L. Zhang, L. Yue et al. // Crystals. - 2017. - V. 63. - I. 3. - Art. no. 63. - 62 p. doi: 10.3390/cryst7030063.
  9. Alberi, K. Valence-band anticrossing in mismatched III-V semiconductor alloys / K. Alberi, J. Wu, W. Walukiewicz et al. // Physical Review B. - 2007. - V. 75. - I. 4. - P. 045203-1-045203-6. doi: 10.1103/PhysRevB.75.045203.
  10. Samajdar, D.P. Influence of Bi-related impurity states on the bandgap and spin-orbit splitting energy of dilute III-V-Bi alloys: InP1-xBix, InAs1-xBix, InSb1-xBix and GaSb1-xBix / D.P. Samajdar, S. Dhar // Superlattices and Microstructures. - 2016. - V. 89. - P. 112-119. doi: 10.1016/j.spmi.2015.10.048.
  11. Ammar, I. Optical gain and threshold current density for mid-infrared GaSbBi/GaSb quantum-well laser structure / I. Ammar, N. Sfina, M. Fnaiech // Materials Science and Engineering: B. - 2021. - V. 266.- Art. № 115056. - 10 p. doi: 10.1016/j.mseb.2021.115056.
  12. Madouri, D. Bismuth alloying in GaAs: a first-principles study / D. Madouri, A. Boukra, A. Zaoui et al. // Computational Materials Science. - 2008. - V. 43. - I. 4. - P. 818-822. doi: 10.1016/j.commatsci.2008.01.059.
  13. Lewis, R.B. GaAs1-xBix light emitting diodes / R.B. Lewis, D.A. Beaton, X. Lu et al. // Journal of Crystal Growth. - 2009. - V. 311. - I. 7. - P. 1872-1875. doi: 10.1016/j.jcrysgro.2008.11.093.
  14. Takahiro, K. Structural characterization of GaAs1-xBix alloy by rutherford backscattering spectrometry combined with the channeling technique / K. Takahiro, K. Kawatsura, K. Oe et al. // Journal of Electronic Materials. - 2003. - V. 32. - I. 1. - P. 34-37. doi: 10.1007/s11664-003-0250-8.
  15. Adamji, H. Density functional theory analysis of the effect of structural configurations on the stability of GaAsBi compounds / H. Adamji, M. Stevens, K. Grossklaus et al. // Computational Materials Science. - 2020.- V. 173. - Art. № 109401. - 12 p. doi: 10.1016/j.commatsci.2019.109401.
  16. Zhen, G. Janus XMoAZ2 (X = S, Se, Te; A = Si, Ge; Z = N, P, As) monolayers: First-principles insight into electronic structures, optical and photocatalytic properties / G. Zhen, H. Xin, L. Wenzhong // Applied Surface Science. - 2023. - V. 639. - Art. № 158146. - 13 p. doi: 10.1016/j.apsusc.2023.158146.
  17. Momma, K. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data / K. Momma, F. Izumi// Journal of Applied Crystallography. - 2011. - V. 44. - I. 6. - P. 1272-1276. doi: 10.1107/S0021889811038970.
  18. Wang, V. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code / V. Wang, N. Xu, J.-C. Liu at al. // Computer Physics Communications. - 2021. - V. 267.- Art. № 108033. - 19 p. doi: 10.1016/j.cpc.2021.108033.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).