EVALUATION OF THE STRUCTURE AND SHAPE OF THE EXPERIMENTALLY OBTAINED Ag NANOPARTICLES
- Authors: Gafner S.L.1, Redel L.V.1
-
Affiliations:
- Katanov Khakass State University
- Issue: No 15 (2023)
- Pages: 377-386
- Section: First-principles and atomistic modeling
- URL: https://ogarev-online.ru/2226-4442/article/view/378468
- DOI: https://doi.org/10.26456/pcascnn/2023.15.377
- EDN: https://elibrary.ru/QXRZNY
- ID: 378468
Cite item
Full Text
Abstract
Silver is one of the most promising nanomaterials for plasmonic applications due to its low cost as well as the ease with which it can be prepared into nanoparticles with controlled size and shape. By now, it has already become clear that it is the shape and internal symmetry of nanoparticles that can significantly affect the scattering and absorption of a light wave, since without the formation of a strong dipole, these effects in nanoparticles will be insignificant. Therefore, the main objective of the study was a theoretical analysis of the processes of formation of the external and internal structure of silver nanoclusters obtained by some methods of physical synthesis. To do this, we studied high-resolution electron microscopy data for the initial and annealed silver nanoparticles formed on a carbon substrate by vacuum thermal evaporation and having sizes from 2,0 to 10,0 nm. It has been established that, as a result of annealing, the number of small nanoparticles ( D < 3,5 nm) decreases by approximately 2 times, and the proportion of nanoparticles with icosahedral and decahedral faceting increases by approximately 1,5 times. Based on the analysis performed, conclusions were drawn about the possible features and mechanisms of formation of various types of symmetry in synthesized Ag nanoparticles.
About the authors
Svetlana L. Gafner
Katanov Khakass State University
Email: sgafner@rambler.RUS
Abakan, Russia
Larisa V. Redel
Katanov Khakass State UniversityAbakan, Russia
References
- Filipczak, P. Surface-enhanced Raman scattering of water in aqueous dispersions of silver nanoparticles / P. Filipczak, K. Hałagan, J. Ulański, M. Kozanecki // Beilstein Journal of Nanotechnology. - 2021. - V. 12.- P. 497-506. doi: 10.3762/bjnano.12.40.
- Rycenga, M. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. / M. Rycenga, C.M. Cobley, J. Zeng et al. // Chemical Review. - 2011. -V. 111. - I. 6. -Р. 3669-3712. doi: 10.1021/cr100275d.
- Misirli, G.M. A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization / G.M. Misirli, K. Sridharan, S.M.P. Abrantes // Beilstein Journal of Nanotechnology. - 2021. - V. 12. - P. 440-461. doi: 10.3762/bjnano.12.36.
- Velázquez, J.J. Energy level diagram and kinetics of luminescence of Ag nanoclusters dispersed in a glass host / J.J. Velázquez, V.K. Tikhomirov, L.F. Chibotaru et al, //Optics Express. - 2012. -V. 20. - I. 12.- Р.13582-13591. doi: 10.1364/OE.20.013582.
- Zhang, Q. A systematic study of the synthesis of silver nanoplates: is citrate a "magic" reagent? / Q. Zhang, N. Li, J.Goebl, Z. Lu, Y. Yin // Journal of the American Chemical Society. - 2011. - V. 133. - I. 46.- P. 18931-18939. doi: 10.1021/ja2080345.
- Wiley, B.J. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis / B.J. Wiley, S.H. Im, Z.-Y. Li et al. // The Journal of Physical Chemistry B. - 2006. - V. 110. - I. 32. - P. 15666-15675. doi: 10.1021/jp0608628.
- Grishina, Ya.S. Electron microscopy study of silver nanoparticles obtained by thermal evaporation / Ya.S. Grishina, N.I. Borgardt, R.L. Volkov, D.G. Gromov, A.I. Savitskiy // Semiconductors. - 2019. - V. 53.- I. 15. - P. 1986-1991. doi: 10.1134/S1063782619150089.
- Викарчук, А.А. Особенности массо- и теплообмена в микро- и наночастицах, формирующихся при электрокристаллизации меди / А. А. Викарчук, И. С. Ясников // Физика твердого тела. - 2006. - Т. 48.- Вып. 3. - С. 536-539.
- Рыжкова, Д.А. Влияние "магических" ГЦК чисел на стабильность строения малых нанокластеров серебра / Д.А. Рыжкова, С.Л. Гафнер, Ю.Я. Гафнер // Письма в Журнал экспериментальной и теоретической физики. - 2021. - Т. 113. - Вып. 10. - С. 669-677. doi: 10.31857/S1234567821100062.
- Рыжкова, Д.А. Оценка влияния икосаэдрических "магических" чисел на термическую стабильность малых нанокластеров серебра /Д.А. Рыжкова, С.Л. Гафнер, Ю.Я. Гафнер // Физика твердого тела - 2022. - Т. 64. - Вып. 3. - С. 313-318. doi: 10.21883/FTT.2022.03.52091.245.
- Рыжкова, Д.А.К вопросу стабилизации икосаэдрического строения малых нанокластеров серебра в ходе термического воздействия. /Д. А. Рыжкова, С. Л. Гафнер, Ю. Я. Гафнер // Физика металлов и металловедение - 2022. - Т. 123. -Вып. 6. - С. 604-613. doi: 10.1134/S0031918X22060138.
- Молекулярно-динамическое исследование размерной границы перехода нанокластеров серебра с начальной аморфной структутурой к ГЦК фазе / Д. А. Рыжкова, С. Л. Гафнер, Ю. Я. Гафнер, А. А. Череповская // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2022. - № 14. - С. 490-498. - doi: 10.26456/pcascnn/2022.14.490. - EDN DOXFMS.
- Гафнер, С.Л. Анализ процессов конденсации наночастиц Ni из газовой фазы / С.Л. Гафнер, Ю.Я. Гафнер // Журнал экспериментальной и теоретической физики. - 2008. - Т. 134. - Вып. 4. - С. 831-844.
- Chepkasov, I.V. Changing of the shape and structure of Cu nanoclusters generated from a gas phase: MD simulations. / I.V. Chepkasov, Yu.Ya. Gafner, S.L. Gafner// Journal of Aerosol Science - 2016 - V. 91. - P. 33-42. doi: 10.1016/j.jaerosci.2015.09.004.
- Manninen, N.K. Production and characterization of Ag nanoclusters produced by plasma gas condensation / N.K. Manninen, N.M. Figueiredo, S. Carvalho, A. Cavaleiro // Plasma Processes and Polymers. - 2014. - V. 11. - I. 7. - Р. 629-638. doi: 10.1002/ppap.201300175
- Gafner, Yu.Ya. The role of gold atom concentration in the processes of formation of Cu-Au nanoparticles from the gas phase / Yu.Ya. Gafner, S.L. Gafner, D.A. Ryzkova, A.V. Nomoev // Beilstein Journal of Nanotechnology. - 2021. - V. 12. - P. 72-81. doi: 10.3762/bjnano.12.6.
- Prunier, H. New insights into the mixing of gold and copper in a nanoparticle from a structural study of Au-Cu nanoalloys synthesized via a wet chemistry method and pulsed laser deposition / H. Prunier, J. Nelayah, Ch. Ricolleau et al. // Physical Chemistry Chemical Physics. - 2015. - V. 17. - I. 42. - P. 28339-28346. doi: 10.1039/C5CP01491C.
- Garzon, I.L. Lowest energy structures of gold nanoclusters / I.L. Garzon, K. Michaelian, M.R. Beltran et. al. // Physical Review Letters. - 1998. - V. 81. - I. 8. - P. 1600-1603. doi: 10.1103/PhysRevLett.81.1600.
- Громов, Д.Г. Исследование начальных стадий конденсации Ag и Au на поверхности аморфного углерода при термическом испарении в вакууме / Д.Г. Громов, Л.М. Павлова, А.И. Савицкий, А.Ю. Трифонов // Физика твердого тела. - 2015. - Т. 57. - Вып. 1. - С. 163-169.
- Gardea-Torresdey, J.L. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles / J.L. Gardea-Torresdey, E. Gomez, J.R. Peralta-Videa et al. // Langmuir. - 2003. - V. 19. - I. 4. - P. 1357-1361. doi: 10.1021/la020835i.
Supplementary files
