TO THE PROBLEM OF APPLICATION OF NANOCLUSTERS Ag-Cu IN PLASMONICS

Cover Page

Cite item

Full Text

Abstract

The magnitude of the localized surface plasmon resonance (LSPR) in metal nanoparticles is determined by many factors. Thus, with an increase in their average linear size, the maximum position of the LSPR peak shifts towards long waves. However, the position of the LSPR maximum is affected to a greater extent by the material of the nanoparticles. Changing the average particle diameter from D = 7 nm to D = 60 nm makes it possible to vary the position of the LSPR maximum in the range of about 50 nm. However, with a smooth change in the composition of binary nanoparticles, it can already be varied within about 120 nm. Therefore, copper-silver alloy nanoparticles are of great practical interest due to the possibility of fine-tuning the plasmonic effects present in them by changing the composition, size, shape, and structure of the nanoparticles. Based on the results of the analysis of the available experimental data, it was concluded that it is possible to control the internal structure and shape of Ag - Cu nanoparticles in order to shift the plasmon resonance peak and enhance it.

About the authors

Svetlana L. Gafner

Katanov Khakass State University

Email: sgafner@rambler.RUS
Abakan, Russia

References

  1. Dubkov, S.V. SERS in red spectrum region through array of Ag-Cu composite nanoparticles formed by vacuum-thermal evaporation / S.V. Dubkov, A.I. Savitskiy, A. Yu. Trifonov et.al. // Optical Materials: X. - 2020. - V. 7. - Art. № 100055. doi: 10.1016/j.omx.2020.100055.
  2. Ferrando, R. Quantum effects on the structure of pure and binary metallic nanoclusters / R. Ferrando, A. Fortunelli, G. Rossi // Physical Review B. - 2005. - V 72. - I. 8. - Р. 085449-1-085449-9. doi: 10.1103/PhysRevB.72.085449.
  3. Lia, Zh. Effects of doping in 25-atom bimetallic nanocluster catalysts for carbon-carbon coupling reaction of iodoanisole and phenylacetylene / Zh. Lia, X. Yanga, Ch. Liua, J. Wanga, G. Li // Progress in Natural Science: Materials International. - 2016. - V. 26. - I. 5. - Р. 477-482. doi: 10.1016/j.pnsc.2016.09.007.
  4. Shin, K. Structural stability of AgCu bimetallic nanoparticles and their application as a catalyst: a DFT study / K. Shin, D.H. Kim, S.C. Yeo, H.M. Lee // Catalysis Today. - 2012. - V. 185. - I. 1. - P.94-98. doi: 10.1016/j.cattod.2011.09.022.
  5. Kim, S.J. Fabrication of conductive interconnects by Ag migration in Cu-Ag coreshell nanoparticles / S.J. Kim, E.A. Stach, C.A. Handwerker // Applied Physics Letters. - 2010. - V. 96. - I. 14. - Р. 144101-1-144101-4. doi: 10.1063/1.3364132.
  6. Panizon, E. Tuning the structure of nanoparticles by small concentrations of impurities / E. Panizon, D. Bochicchio, G. Rossi, R. Ferrando // Chemistry of Materials. - 2014. - V. 26. - I. 11. - Р. 3354-3356. doi: 10.1021/cm501001f.
  7. Shellaiah, M. Luminescent metal nanoclusters for potential chemosensor applications / M. Shellaiah, K.W. Sun // Chemosensors. - 2017. - V. 5. - I. 4. - Art. № 36. 31 p. doi: 10.3390/chemosensors5040036.
  8. Araujo, T.P. Understanding plasmonic catalysis with controlled nanomaterials based on catalytic and plasmonic metals / T.P. Araujo, J. Quiroz, E.C.M. Barbosa, P.H.C. Camargo // Current Opinion in Colloid & Interface Science. - 2019. - V. 39. - P. 110-122. doi: 10.1016/j.cocis.2019.01.014.
  9. Otto, A. Surface-enhanced Raman scattering: "classical" and "chemical" origins / A. Otto // In book: Light Scattering in Solids IV. Topics in Applied Physics; ed. by M. Cardona, G. Güntherodt. - Berlin, Heidelberg: Springer, 1984. - Chapter 6. - P. 289-418. doi: 10.1007/3-540-11942-6_24.
  10. Mohd Saidi, M.S.A. Visible light emission from Dy3+ doped tellurite glass: role of silver and titania nanoparticles co-embedment / M.S.A. Mohd Saidi, S.K. Ghoshal, K. Hamzah et. al. // Journal of Non-Crystalline Solids. - 2018. - V. 502. - P. 198-209. doi: 10.1016/j.jnoncrysol.2018.09.012.
  11. Maurya, S.K. Plasmonic enhancement of upconversion emission in Ag@NaYF4:Er3+/Yb3+ phosphor / S.K. Maurya, S.P. Tiwari, A. Kumar, K. Kumar // Journal of Rare Earths. - 2018. - V. 36. - I. 9. - P. 903-910. doi: 10.1016/j.jre.2018.03.003.
  12. Qian, K. Surface plasmon-driven water reduction: gold nanoparticle size matters / K. Qian, B.C. Sweeny, A.C. Johnston-Peck et. al. // Journal of the American Chemical Society. - 2014. - V. 136. - I. 28. - P. 9842-9845. doi: 10.1021/ja504097v.
  13. da Silva, A.G.M. The fault in their shapes: investigating the surface-plasmon-resonance-mediated catalytic activities of silver quasi-spheres, cubes, triangular prisms, and wires / A.G.M. da Silva, T.S. Rodrigues, J. Wang et. al. // Langmuir. - 2015. - V. 31. - I. 37. - P. 10272-10278. doi: 10.1021/acs.langmuir.5b02838.
  14. Gromov, D.G. Optimization of nanostructures based on Au, Ag, Au-Ag nanoparticles formed by thermal evaporation in vacuum for SERS applications / D.G. Gromov, S.V. Dubkov, A.I. Savitskiy et. al. // Applied Surface Science. - 2019. - V. 489. - P. 701-707. DOI: 10.1016/j. apsusc.2019.05.286.
  15. Satya Bharati, M.S. Explosives sensing using Ag-Cu alloy nanoparticles synthesized by femtosecond laser ablation and irradiation / M.S. Satya Bharati, B. Chandu, S.V. Rao // RSC Advances. - 2019. - V. 9. - V. 3.- P. 1517-1525. doi: 10.1039/C8RA08462A.
  16. Tan, K.S. Advances of Ag, Cu, and Ag-Cu alloy nanoparticles synthesized via chemical reduction route / K.S. Tan, K.Y. Cheong // Journal of Nanoparticle Research. - 2013. - V. 15. - Art. № 1537. - 29 p. doi: 10.1007/s11051-013-1537-1.
  17. Malviya, K.D. Synthesis and mechanism of composition and size dependent morphology selection in nanoparticles of Ag-Cu alloys processed by laser ablation under liquid medium / K.D. Malviya, K. Chattopadhyay // The Journal of Physical Chemistry C. - 2014. - V. 118. - I. 24. - P. 13228-13237. doi: 10.1021/jp502327c.
  18. Zhang, P. High-yield production of uniform gold nanoparticles with sizes from 31 to 577 nm via one-pot seeded growth and size-dependent SERS property / P. Zhang, Y. Li, D. Wang, H. Xia // Particle & Particle Systems Characterization. - 2016. - V. 33. - I. 12. - P. 924-932. doi: 10.1002/ppsc.201600188.
  19. Гафнер, Ю. Я. Влияние химического состава на размер синтезированных из газовой фазы наночастиц Cu - Au / Ю. Я. Гафнер, С. Л. Гафнер // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2019. - № 11. - С. 449-457. - doi: 10.26456/pcascnn/2019.11.449. - EDN DXTUPW.
  20. Bochicchio, D. Structures and segregation patterns of Ag-Cu and Ag-Ni nanoalloys adsorbed on MgO(001) / D. Bochicchio, R. Ferrando, E. Panizon, G. Rossi // Journal of Physics: Condensed Matter. - 2016. - V. 28.- № 6. - Art. № 064005. 13 pp. doi: 10.1088/0953-8984/28/6/064005.
  21. Gafner, Yu. Dual structural transition in small nanoparticles of Cu-Au alloy / Yu. Gafner, S. Gafner, L. Redel, I. Zamulin // Journal of Nanoparticle Research. - 2018. - V. 20. - I. 2. - Art. № 51. - 14 p. doi: 10.1007/s11051-018-4161-2.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).