ABOUT THE POSSIBILITY OF APPLYING EMPIRICAL METHODS OF ESTIMATION OF STANDARD ENTHALPIES OF FORMATION OF ORGANIC COMPOUND FOR FULLERENES
- Authors: El Zanin A.R.1, Boroznin S.V.1, Zaporotskova I.V.1, Boroznina N.P.1, Kozhitov L.V.2, Popkova A.V.3
-
Affiliations:
- Volgograd State University
- National University of Science and Technology «MISIS»
- Research Institute of Scientific and Production Association «Luch»
- Issue: No 15 (2023)
- Pages: 317-327
- Section: Theory of nanosystems
- URL: https://ogarev-online.ru/2226-4442/article/view/378462
- DOI: https://doi.org/10.26456/pcascnn/2023.15.317
- EDN: https://elibrary.ru/TXESFD
- ID: 378462
Cite item
Full Text
Abstract
About the authors
Anton R. El Zanin
Volgograd State University
Email: nmtb-201_341523@volsu.RUS
Volgograd, Russia
Sergey V. Boroznin
Volgograd State UniversityVolgograd, Russia
Irina V. Zaporotskova
Volgograd State UniversityVolgograd, Russia
Natalya P. Boroznina
Volgograd State UniversityVolgograd, Russia
Lev V. Kozhitov
National University of Science and Technology «MISIS»Moscow, Russia
Alena V. Popkova
Research Institute of Scientific and Production Association «Luch»Podolsk, Russia
References
- Kroto, H.W. C60: Buckminsterfullerene / H.W. Kroto, J.R. Heath, S.C. O'Brien et al. // Nature. - 1985.- V. 318. - P. 162-163. doi: 10.1038/318162a0.
- Neuman, M.U. Nanomaterials for hydrogen storage applications: a review / M.U. Neuman, S.S. Srinivasan, A.R. Phani et al. // Journal of Nanomaterials. - 2008. - V. 2008. - Art. ID. 950967. - 9 p. doi: 10.1155/2008/950967.
- Oku, T. Hydrogen storage in boron nitride and carbon nanomaterials / T. Oku // Energies. - 2014. - V. 8.- I. 1. - P. 319-337. doi: 10.3390/en8010319.
- Wang, Q. Theoretical study of hydrogen storage in Ca-coated fullerenes / Q. Wang, Q. Sun, P. Jena et al. // Journal of Chemical Theory and Computation. - 2009. - V. 5. - I 2. - P. 374-379. doi: 10.1021/ct800373g.
- Anilkumar, P. Fullerenes for applications in biology and medicine // Current Medicinal Chemistry / P. Anilkumar, F. Lu, L. Cao et al. // Current Medicinal Chemistry. - 2011. - V. 18. - I. 14. -P. 2045-2059. doi: 10.2174/092986711795656225.
- Kumar, M. C60-fullerenes as drug delivery carriers for anticancer agents: promises and hurdles / M. Kumar, K. Raza // Pharmaceutical Nanotechnology. - 2017. - V. 5. - I. 3. - P. 169-179. doi: 10.2174/2211738505666170301142232.
- Kazemzadeh, H. Fullerene-based delivery systems / H. Kazemzadeh, M. Mozafari // Drug Discovery Today. - 2019. - V. 24. - I. 3. - P. 898-905. doi: 10.1016/j.drudis.2019.01.013.
- Kian, M. Adsorption behavior of aromasin onto C20 and C24 nano-cages: density functional theory study / M. Kian, E. Tazikeh-Lemeski // Russian Journal of Inorganic Chemistry. - 2020. - V. 65. - I. 12. - P. 1848-1853. doi: 10.1134/S0036023620120074.
- Baran, L.V. Annealing effect on the structure, phase composition, and nanohardness of titanium/fullerite films / L.V. Baran // Inorganic Materials. - 2010. - V. 46. - I. 8. - P. 824-832. doi: 10.1134/S0020168510080042.
- Baran, L.V. Effect of metal content on the structure and phase composition of Fullerite-Sn films / L.V. Baran // Inorganic Materials. - 2013. - V. 49. - I. 3. - P. 257-265. doi: 10.1134/S0020168513020015.
- Baenitz, M. Superconductivity of Rb2CsC60: ac response and upper critical field / M. Baenitz, M. Heinze, K. Lüders et al. // Solid State Communications. - 1994. - V. 91. - I. 5. - P. 337-340. doi: 10.1016/0038-1098(94)90629-7.
- Wang, P. Superconductivity in Langmuir-Blodgett multilayers of fullerene (C60) doped with potassium / Wang P., Metzger R.M., Bandow S. et al. // Journal of Physical Chemistry. - 1993. - V. 97. - I. 12. - P. 2926-2927. doi: 10.1021/j100114a016.
- Rosseinsky, M.J. Superconductivity at 28 K in RbxC60 / M.J. Rosseinsky, A.P. Ramirez, S.H. Glarum et al. // Physical Review Letters. - 1991. - V. 66. - I. 21. - P. 2830. doi: 10.1103/PhysRevLett.66.2830.
- Sidorov, N.S. Intercalation of C60 fullerene crystals with calcium and barium via self-propagating high-temperature synthesis / N.S. Sidorov, A.V. Palnichenko, O.G. Rybchenko et al. // Inorganic Materials. - 2010.- V. 46. - I. 5. - P. 476-479. doi: 10.1134/S0020168510050079.
- Kalinkin, A.N. Calculation of the free energy of fullerenes in the Gross-Neveu model / A.N. Kalinkin, V.M. Skorikov // Inorganic Materials. - 2002. - V. 38. - I. 3. - P. 212-215. doi: 10.1023/A:1014706429759.
- Yudina, N.V. Calculation of fullerene parameters by the implemented one-dimensional method for determination of eigenvalues and eigenfunctions in one-dimensional clusters of planar, cylindrical, and spherical geometry / N.V. Yudina, N.R. Sadykov // Russian Journal of Inorganic Chemistry. - 2019. - V. 64.- I. 1. - P. 98-107. doi: 10.1134/S0036023619010212.
- Stolyarova, V.L. The potential of the Wilson method in the calculation of the thermodynamic properties of oxide systems at high temperatures / V.L. Stolyarova, V.A. Vorozhtcov // Russian Journal of Inorganic Chemistry. - 2021. - V. 66. - I. 9. - P. 1396-1404. doi: 10.1134/S0036023621090163.
- Перевощиков, А.В. Уравнение состояния периклаза на основе функций Планка-Эйнштейна / А.В. Перевощиков, А.И. Максимов, И.И. Бабаян и др. // Журнал неорганической химии. - 2023. - Т. 68.- № 2. - С. 191-202. doi: 10.31857/S0044457X22601407.
- Volokhov, V.M. Predictive modeling of molecules of high-energy heterocyclic compounds / V.M. Volokhov, T.S. Zyubina, A.V. Volokhov et al. //Russian Journal of Inorganic Chemistry. - 2021. - V. 66. - I. 1. - P. 78-88. doi: 10.1134/S0036023621010113
- Тупицын, А.А. Оценка стандартной энтальпии образования кристаллических боратов щелочных металлов / А.А. Тупицын, В.А. Бычинский, М.В. Штенберг и др. // Журнал неорганической химии.- 2023. - Т. 68. - № 3. - С. 325-332. doi: 10.31857/S0044457X22601808.
- Malyshkina, M.V. Modern software for computer modeling in quantum chemistry and molecular dynamics / M.V. Malyshkina, A.S. Novikov // Compounds. - 2021. - V. 1. - I. 3. - P. 134-144. doi: 10.3390/compounds1030012.
- Chan, B. From C60 to infinity: large-scale quantum chemistry calculations of the heats of formation of higher fullerenes / B. Chan, Y. Kawashima, M. Katouda et al. // Journal of the American Chemical Society. - 2016.- V. 138. - I. 4. - P. 1420-1429. doi: 10.1021/jacs.5b12518.
- Chan, B. Fullerene thermochemical stability: accurate heats of formation for small fullerenes, the importance of structural deformation on reactivity, and the special stability of C60 / B. Chan // Journal of Physical Chemistry A. - 2020. - V. 124. - I. 33. - P. 6688-6698. doi: 10.1021/acs.jpca.0c04732.
- Cioslowski, J. Standard enthalpies of formation of fullerenes and their dependence on structural motifs / J. Cioslowski, N. Rao, D. Moncrieff // Journal of the American Chemical Society. - 2000. - V. 122. - I. 34.- P. 8265-8270. doi: 10.1021/ja001109+.
- Kolesov, V.P. Enthalpies of combustion and formation of fullerene C60 / V.P. Kolesov, S.M. Pimenova, V.K. Pavlovich et al. // The Journal of Chemical Thermodynamics. - 1996. - V. 28. - I. 10. - P. 1121-1125. doi: 10.1006/jcht.1996.0098
- Diogo, H.P. Enthalpies of formation of buckminsterfullerene (C60) and of the parent ions C60+, C602+, C603+ and C60- / H.P. Diogo, M.E.M. da Piedade, T.J.S. Dennis et al. // Journal of the Chemical Society, Faraday Transactions. - 1993. - V. 89. - I. 19. - P. 3541-3544. doi: 10.1039/FT9938903541.
- Beckhaus, H.D. The stability of buckminsterfullerene (C60): experimental determination of the heat of formation / H.D. Beckhaus, C. Rüchardt, M. Kao et al. // Angewandte Chemie, International Edition. - 1992.- V. 31. - I. 1. - P. 63-64. doi: 10.1002/anie.199200631.
- Beckhaus, H.D. C70 is more stable than C60: experimental determination of the heat of formation of C70 / H.D. Beckhaus, S. Verevkin, C. Rüchardt et al. // Angewandte Chemie, International Edition. - 1994. - V. 33.- I. 9. - P. 996-998. doi: 10.1002/anie.199409961.
- Kiyobayashi, T. Combustion calorimetric studies on C60 and C70 / T. Kiyobayashi, M. Sakiyama // Fullerene Science and Technology. - 1993. - V. 1. - I. 3. - P. 269-273. doi: 10.1080/15363839308011895.
- Steele, W.V. Standard enthalpy of formation of buckminsterfullerene / W.V. Steele, R.D. Chirico, N.K. Smith et al. // Journal of Physical Chemistry. - 1992. - V. 96. - I. 12. - P. 4731-4733. doi: 10.1021/j100191a003.
- Taylor, R. Rationalisation of the most stable isomer of a fullerene Cn / R. Taylor // Journal of the Chemical Sociesty, Perkin Transactions 2. - 1992. - I. 1. - P. 3-4. doi: 10.1039/P29920000003.
- Bühl, M. Spherical aromaticity of fullerenes / M. Bühl, A. Hirsch // Chemical Reviews. - 2001. - V. 101.- I. 5. - P. 1153-1184. doi: 10.1021/cr990332q.
- Amend, J.P. Group additivity equations of state for calculating the standard molal thermodynamic properties of aqueous organic species at elevated temperatures and pressures / J.P. Amend, H.C. Helgeson // Geochimica et Cosmochimica Acta. - 1997. - V. 61. - I. 1. - P. 11-46. doi: 10.1016/S0016-7037(96)00306-7.
- Ивашкина, Е.Н. Термодинамический анализ реакций получения низших олефинов в технологии FCC на основе учета функциональных групп в молекулах углеводородов и квантовой химии / Е.Н. Ивашкина, С.К. Форутан // Известия Томского политехнического университета. Инжиниринг георесурсов. - 2022. - Т. 333. - № 11. - С. 101-114. doi: 10.18799/24131830/2022/11/3774.
- Павлинов, Л.И. Расчеты термодинамических свойств полимеров / Л.И. Павлинов, Г.Н. Марченко, Ю.А. Лебедев // Успехи химии. - 1984. - Т. 53. - № 7. - С. 1172-1196. doi: 10.1070/RC1984v053n07ABEH003089.
- Joback, K.G. Estimation of pure-component properties from group-contributions / K.G. Joback, R.C. Reid // Chemical Engineering Communications. - 1987. - V. 57. - I. 1-6. P. 233-243. doi: 10.1080/00986448708960487.
- Kovalenko, V.I. Regularities in the molecular structures of stable fullerenes / V.I. Kovalenko, A.R. Khamatgalimov // Russian Chemical Reviews. - 2006. - V. 75. - I. 11. - P. 981-988. doi: 10.1070/RC2006v075n11ABEH003620
- NIST Chemistry WebBook: NIST Standard Reference Database Number 69 / ed. by P.J. Linstrom, W.G. Mallard. - Gaithersburg MD: National Institute of Standards and Technology, 2023. -Режим доступа: https://webbook.nist.gov/chemistry.- 23.01.2023.
Supplementary files
