STRESS RELAXATION UNDER TENSION BY ACCOMPANYED CURRENT IN ULTRAFINE-GRAIN TITANIUM
- Authors: Korolkov O.E.1, Stolyarov V.V.1
-
Affiliations:
- Mechanical Engineering Research Institute of RAS
- Issue: No 15 (2023)
- Pages: 135-147
- Section: Experimental studies of nanoparticles, nanosystems and nanomaterials
- URL: https://ogarev-online.ru/2226-4442/article/view/378442
- DOI: https://doi.org/10.26456/pcascnn/2023.15.135
- EDN: https://elibrary.ru/TKXZML
- ID: 378442
Cite item
Full Text
Abstract
The article studies the effect of stress relaxation caused by strain stops and pulsed current on the tensile deformation behavior of Grade 4 ultrafine-grained titanium. The samples were deformed in the following modes: without current; continuously with current; with periodic current supply, periodic current supply during stops of strain. The microhardness of the working zone of the tested specimens was studied. Fracture studies of the failure zone were carried out. It is shown that, as a result of the continuous introduction of current during tension, the flow stresses decrease, and the elongation to failure increases. Periodic introduction of current, accompanied by strain stops, leads to a maximum increase in the relative elongation to failure due to stress relaxation. The relaxation effect of the pulsed current is manifested in a decrease in microhardness and the transition of the fracture type from a dimple-cup fracture to a predominantly dimple fracture.
About the authors
Oleg E. Korolkov
Mechanical Engineering Research Institute of RAS
Email: korolkov_oleg@vk.com
Moscow, Russia
Vladimir V. Stolyarov
Mechanical Engineering Research Institute of RASMoscow, Russia
References
- Hariharan, K. Stress relaxation and its effect on tensile deformation of steels / K. Hariharan, O. Majidi, C. Kim et al. // Materials & Design (1980-2015). - 2013. - V. 52, - P. 284-288. doi: 10.1016/j.matdes.2013.05.088.
- Fox, A. Effect of temperature on stress relaxation of several metallic materials / A. Fox // Residual Stress and Stress Relaxation. In: Sagamore Army Materials Research Conference Proceedings; ed. by E. Kula, V. Weiss.- New York, Springer, 1982. - V. 28. - Сh. 11. - P. 181-203. doi: 10.1007/978-1-4899-1884-0_11.
- Klunnikova, Yu.V. The thermoelastic stresses during laser annealing of titanium dioxide on a sapphire substrate / Yu. V. Klunnikova, M. V. Anikeev, A. V. Filimonov // St. Petersburg Polytechnic University Journal - Physics and Mathematics. - 2022. - V. 15. - I. 3. - P. 100-110. doi: 10.18721/JPM.15308.
- Zhang, X. Effects of magnetic field on the residual stress and structural defects of Ti-6Al-4V / X. Zhang, Q. Zhao, Z. Cai, J. Pan // Metals. -2020. - V. 10. - I. 1. - Art. № 141. - 12 p. doi: 10.3390/met10010141
- Балтаев, Т.А. Ультразвуковой метод стабилизации механических и геометрических параметров изделий / Т.А. Балтаев, Д.К. Кушалиев, Б.А. Ерманова // Вестник Восточно-Казахстанского государственного технического университета им. Д. Серикбаева. - 2019. - № 2. - С. 99-104.
- Liang, P.C. Non-deformation recrystallization of metal with electric current stressing / P. C. Liang, K.L. Lin // Journal of Alloys and Compounds. - 2017. - V. 722. - P. 690-697 doi: 10.1016/j.jallcom.2017.06.032.
- Комаристая, К.О. О релаксации напряжений и разрушения в наноструктурных твердых телах / К.О. Комаристая // 2-я Международной научно-практической конференции "Ресурсосбережение и экология строительных материалов, изделий и конструкций": сборник научных трудов в 2 томах, 1 октября 2019, Курск. - Курск: Юго-Западный государственный университет, - 2019. - Т. 1. - С. 197-199.
- Krasnikov, V. Effect of copper segregation at low-angle grain boundaries on the mechanisms of plastic relaxation in nanocrystalline aluminum: an atomistic study / V. Krasnikov, A. Mayer, P. Bezborodova, M. Gazizov // Materials. - 2023. - V. 16. - I. 8. - Art. № 3091. - 18 p. doi: 10.3390/ma16083091
- Sheng, Y. Application of high-density electropulsing to improve the performance of metallic materials: mechanisms, microstructure and properties / Y. Sheng, Y. Hua, X. Wang et al. // Materials. - 2018. - V. 11.- I. 2. - Art. № 185. - 25 p. doi: 10.3390/ma11020185.
- Semenova, I. Ultrafine-grained titanium-based alloys: structure and service properties for engineering applications. / I. Semenova, V. Polyakova, G. Dyakonov, A. Polyakov // Advanced Engineering Materials. - 2022. - V. 22. - I. 1. - Art. № 1900651. - 13 p. doi: 10.1002/adem.201900651.
- Majchrowicz, K. Thermal stability and mechanical behavior of ultrafine-grained titanium with different impurity content / K. Majchrowicz, A. Sotniczuk, J. Malicka et al. // Materials. - 2023. - V. 16. - I. 4.- Art. № 1339. - 13 p. doi: 10.3390/ma16041339.
- Eipert, I. Improvement in ductility in commercially pure titanium alloys by stress relaxation at room temperature / I. Eipert, G. Sivaswamy, R. Bhattacharya et al. // Key Engineering Materials. - 2014. - V. 611-612. - P. 92-98. doi: 10.4028/ href='www.scientific.net/kem.611-612.92' target='_blank'>www.scientific.net/kem.611-612.92.
- Поляков, А.В. Эволюция микроструктуры титана Grade 4 c изменением степени деформации при РКУП-CONFORM /А. В. Поляков, Д. В. Гундеров, Г. И. Рааб, Е. П. Сошникова // Вестник Уфимского государственного авиационного технического университета. - 2011. - Т. 15. - № 1 (41). - С. 95-100.
- ASTM F67-06. Standard specification for unalloyed titanium, for surgical implant applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700). - Режим доступа: https://www.astm.org/f0067-06.html.- 01.09.2023.
- Stolyarov, V. Features of the interaction of plastic deformation and pulse current in various materials / V. Stolyarov, I. Calliari, C. Gennari // Materials Letters. - 2021. - V. 299. - Art. № 130049. - 9 p. doi: 10.1016/j.matlet.2021.130049.
- Kim, M.-J. Elucidating the origin of electroplasticity in metallic materials / M.-J. Kim, S. Yoon, S. Park et al. // Applied Materials Today. - 2020. - V. 21. - Art. № 100874. - 13 p. doi: 10.1016/j.apmt.2020.100874.
- Conrad, H. Electroplasticity in metals and ceramics / H. Conrad // Materials Science and Engineering.-2000. - V. 287. - I. 2. - P. 276-287. doi: 10.1016/S0921-5093(00)00786-3.
- Ao, D.-W. Hot tensile behaviors and microstructure evolution of Ti-6Al-4V titanium alloy under electropulsing / D.-W. Ao, X.-R. Chu, S.-X. Lin et al. // Acta Metallurgica Sinica (English Letters). - 2018.- V. 31. - I. 12. - P. 1287-1296. doi: 10.1007/s40195-018-0735-3.
- Zhao, S. Minor defect reconfiguration in a Ti-Al alloy via electroplasticity / S. Zhao, R. Zhang, Y. Chong // Nature Materials. - 2021. - V. 20. - P. 468-472. doi: 10.1038/s41563-020-00817-z.
- Корольков, О.Е. Электропластический эффект в титановых сплавах при их растяжении / О.Е. Корольков, М. А. Пахомов, В. В. Столяров // Заводская лаборатория. Диагностика материалов.- 2022. - Т. 88. - № 10. - С. 73-82. doi: 10.26896/1028-6861-2022-88-10-73-82.
- Stolyarov, V.V. Deformation behavior under tension with pulse current of ultrafine-grain and coarse-grain CP titanium / V.V. Stolyarov, O.E. Korolkov, A.M. Pesin, G.I. Raab // Materials. - 2023. - V. 16. - I. 1.- Art. № 191. - 10 p. doi: 10.3390/ma16010191.
- Корольков, О.Е. Влияние размера зерна и скважности на механическое поведение титана при растяжении с импульсным током / О.Е. Корольков, М.А. Пахомов, А.В. Поляков и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2022. - Вып. 14. - С. 639-651. doi: 10.26456/pcascnn/2022.14.639.
- Ruszkiewicz, B.J. A Review of electrically-assisted manufacturing with emphasis on modeling and understanding of the electroplastic effect / B.J. Ruszkiewicz, T. Grimm, I. Ragai et al. // Journal of Manufacturing Science & Engineering. - 2017. - V. 139. - I. 11. - Art. № 110801. - 15 p. doi: 10.1115/1.4036716.
Supplementary files
