FEATURES OF THE LOCALIZATION OF DOPPING CATIONS Tb3+ IN A LiNbO3 CRYSTAL IN THE CONCENTRATION RANGE 0,1-2,21 WT. %

Cover Page

Cite item

Full Text

Abstract

LiNbO 3: Tb (0,1 wt.%), LiNbO 3: Tb (0,48 wt.%), and LiNbO 3: Tb (2,21 wt.%) crystals were studied by the infrared absorption spectroscopy in the area of valence vibrations of OH --groups. These crystals were grown by Czochralski method employing direct alloying of blend of the congruent composition. It was found that when the concentration of point defect centers of the cationic sublattice VLi was higher, than the concentration of impurity point defects TbLi , an absorption band with the frequency of 3487 cm-1 was registered in the IR spectrum. This absorption band is associated with the violation of stoichiometry and the formation of a complex defect ( VLi - OН ) in the LiNbO 3: Tb (0,1 wt.%), and LiNbO 3: Tb (0,48 wt.%) crystals. A further increase in the concentration of the alloying impurity leads to a change in the O-O bond length, which affects the OH -bond length and the appearance of a new absorption band with a frequency of 3493 cm-1, which corresponds to the complex defect ( TbLi - OН ) in the LiNbO 3 crystal. Due to non-uniform admixture in the LiNbO 3:Tb crystal, clusters are formed to which the absorption bands with frequencies in the range of from 3100-3403 cm-1 to 3510-3580 cm-1 in the spectrum.

About the authors

Lyubov A. Bobreva

Tananaev Institute of Chemistry - Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»

Email: l.bobreva@ksс.RUS
Apatity, Russia

Nikolay V. Sidorov

Tananaev Institute of Chemistry - Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»

Apatity, Russia

Mikhail N. Palatnikov

Tananaev Institute of Chemistry - Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»

Apatity, Russia

Alexsandr Yu. Pyatyshev

Р.N. Lebedev Physical Institute of the Russian Academy of Sciences

Moscow, Russia

References

  1. Сидоров, Н.В. Ниобат лития: дефекты, фоторефракция, колебательный спектр, поляритоны / Н.В. Сидоров, Т.Р. Волк, Б.Н. Маврин, В.Т. Калинников. - М.: Наука, 2003. - 255 с.
  2. Палатников, М.Н. Фундаментальные аспекты технологии сильно легированных кристаллов ниобата лития / М.Н. Палатников, Н.В. Сидоров, О.В. Макарова, И.В. Бирюкова. - Апатиты: КНЦ РАН, 2017.- 241 с.
  3. Кузьминов, Ю.С. Электрооптический и нелинейнооптический кристалл ниобата лития / Ю.С. Кузьминов. - М.: Наука, 1987. - 264 с.
  4. Iyi, N. Comparative study of defect structures in lithium niobate with different compositions / N. Iyi, K. Kitamura, F. Izumi et al. // Journal of Solid State Chemistry. - 1992. - V. 101. - I. 2.- P. 340-352. doi: 10.1016/0022-4596(92)90189-3.
  5. Donnerberg, H.J. Computer - simulation studies of intrinsic defects in LiNbО3 / H.J. Donnerberg, S.M. Tomlinson, C.R.A. Catlow, O. F. Schirmer // Physical Review B. 1989. - V. 40. - I. 17. - P. 11909-11916. doi: 10.1103/PhysRevB.40.11909.
  6. Bermúdez, V. Er incorporation into congruent LiNbO3 crystals / V. Bermúdez, M. Serrano, J. Tornero, E. Diéguez // Solid State Communications. - 1999. - V. 112. - I. 12. - P. 699-703. doi: 10.1016/S0038-1098(99)00419-6.
  7. Ryba-Romanowski, W. Influence of temperature on luminescence of terbium ions in LiNbO3 / W. Ryba-Romanowski, S. Golab, G. Dominiak-Dzik et al. // Applied Physics Letters. - 2001. -V.78. - I. 23. - P. 3610-3611. doi: 10.1063/1.1376660.
  8. Cabrera, J.M. Hydrogen in lithium niobate / J.M. Cabrera, J. Olivares, M. Carrascosa et al. // Advances in Physics. - 1996. - V. 45. - I. 5. - P. 349-392. doi: 10.1080/00018739600101517.
  9. Lеngyel, K. Growth, defect structure, and THz application of stoichiometric lithium niobate / K. Lengyel, Á. Péter, L. Kovács et al. // Applied Physics Reviews. - 2015. - V. 2. - I. 4. - Р. 040601-1-040601-28. doi: 10.1063/1.4929917.
  10. Arizmendi, L. Lifetime of thermally fixe holograms in LiNbO3 crystals doped with Mg and Fe / L. Arizmendi, F.J. López-Barberá // Applied Physics B. - 2007. - V. 86. - I. 1. - P. 105-109. doi: 10.1007/s00340-006-2417-5.
  11. Lifante, G. Site-selective spectroscopy of Nd3+ in LiNbО3:Nd and LiNbО3: Nd, Mg crystals / G. Lifante, F. Cussó, F. Jaque, et al. //Chemical Physics Letters. - 1991. - V. 176. - I. 5. - Р. 483-488. doi: 10.1016/0009-2614(91)90241-Z.
  12. Палатников, М.Н. Особенности структуры кристаллов LiNbO3:Tb различного химического состава / М.Н. Палатников, Л.А. Алешина, О.В. Сидорова и др. // Журнал технической физики. - 2021. - Т. 91.- Вып. 6. - С. 956-963. doi: 10.21883/JTF.2021.06.50865.216-20.
  13. Bodziony, T. EPR and optical measurements of weakly doped LiNbO3:Er / T. Bodziony, S.M. Kaczmarek // Physica B: Condensed Matter. - 2007. -V. 400. I. 1-2. - P. 99-105. doi: 10.1016/j.physb.2007.06.032.
  14. Malovichko, G. Electron paramagnetic resonance and electron-nuclear double resonance of nonequivalent Yb3+ centers in stoichiometric lithium niobate / G. Malovichko, V. Bratus, V. Grachev, E. Kokanyan // Physica Status Solidi b. - 2008. - V. 246. - I. 1. - P. 215-225. doi: 10.1002/pssb.200844164.
  15. Kadetova, A.V. Intrinsic stacking fault of the ilmenite type in the structure of lithium niobate crystals of various compositions / A.V. Kadetova, O.V. Tokko, A.I. Prusskii et al. // Materialia. - 2023. - V. 28.- Art. № 101770. - P. 101770-101778. doi: 10.1016/j.mtla.2023.101770.
  16. Sidorov,N.V. Second-order Raman spectra of a LiNbO3:Tb crystal / N.V. Sidorov, M.N. Palatnikov, V.S. Gorelik, P.P. Sverbil // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. - 2022.- V. 266. - Art. № 120445. - P. 120445-120450. doi: 10.1016/j.saa.2021.120445.
  17. Rahman, M.K.R. Investigations on crystalline perfection, Raman spectra and optical characteristics of transition metal (RUS) co-doped Mg:LiNbO3 single crystals / M.K.R. Rahman, B. Riscob, R. Bhatt et al. // ACS Omega. - 2021. - V. 6. - I. 16. - P. 10807-10815. doi: 10.1021/acsomega.1c00452.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).