INVESTIGATION OF THE STRUCTURAL FEATURES OF LiNbO3:Gd (0.002-0.26 wt.%) CRYSTALS BY IR ABSORPTION SPECTRA IN THE REGION OF VALENCE VIBRATIONS OF HYDROGEN BONDS

Cover Page

Cite item

Full Text

Abstract

Nonlinearly optical single crystals LiNbO 3: Gd (0.001-0.26 wt.%) were grown by the Czochralskii method using the technology of direct doping charge of congruent composition. The defect structure of crystals in the region of valence vibrations of hydrogen bonds was studied by IR absorption spectroscopy. It was found that in the region of small concentrations of the doping impurity gadolinium on the IR spectrum there is a decrease in the widths of absorption bands. The gadolinium impurity with the concentration of 0.26 wt.% leads to a significant deformation of the oxygen octahedron due to the large ionic radius of the gadolinium cation and an increase in the O-O length. A new absorption band at 3488 cm-1 corresponding to the VLi-OH complex defect is registered on the IR spectrum. The calculation of the volume concentration of OH- groups showed the lowest value for LiNbO3congr crystal and the highest for LiNbO 3: Gd (0.005 wt.%), which is related to the process of doping impurity entring into the structure and the increase in the number of point defect centers VLi necessary to compensate the structural defect GdLi2+.

About the authors

Lyubov A. Bobreva

Tananaev Institute of Chemistry - Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»

Email: l.bobreva@ks.RUS
Apatity, Russia

Nikolay V. Sidorov

Tananaev Institute of Chemistry - Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»

Apatity, Russia

Mikhail N. Palatnikov

Tananaev Institute of Chemistry - Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»

Apatity, Russia

Alevtina N. Gosteva

Tananaev Institute of Chemistry - Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»

Apatity, Russia

References

  1. Сидоров, Н.В. Ниобат лития: дефекты, фоторефракция, колебательный спектр, поляритоны / Н.В. Сидоров, Т.Р. Волк, Б.Н. Маврин, В.Т. Калинников. - М.: Наука, 2003. - 255 с.
  2. Kemlin, V. Dual-wavelength source from 5% MgO:PPLN cylinders for the characterization of nonlinear infrared crystals / V. Kemlin, D. Jegouso, J. Debray et al. // Optics Express. - 2013. - V. 21. - I. 23. - Р. 28886-28891. doi: 10.1364/OE.21.028886.
  3. Murray, R.T. High average power parametric wavelength conversion at 3.31-3.48 μm in MgO:PPLN / R.T. Murray, T.H. Runcorn, S. Guha, J.R. Taylor // Optics Express. - 2017. -V. 25. - I. 6. - Р. 6421-6430. doi: 10.1364/OE.25.006421.
  4. Iyi, N. Comparative study of defect structures in lithium niobate with different compositions / N. Iyi, K. Kitamura, F. Izumi et al. // Journal of Solid State Chemistry. - 1992. - V. 101. - I. 2.- P. 340-352. doi: 10.1016/0022-4596(92)90189-3.
  5. Lengyel, K. The effect of stoichiometry and Mg doping on the Raman spectra of LiNbO3:Mg crystals / K. Lengyel, L. Kovács, A. Pẻter et al. // Applied Physics B: Lasers and Optics. - 2007. - V. 87. - I. 2. - P. 317-322. doi: 10.1007/s00340-007-2589-7.
  6. Палатников, М.Н. Влияния технологии приготовления шихты на физико-химические и оптические свойства кристаллов LiNbO3:Mg / М.Н. Палатников, И.В. Бирюкова, О.В. Макарова и др. // Перспективные материалы. - 2016. - № 1. - C. 5-13.
  7. Arizmendi, L. Lifetimes of thermally fixed holograms in LiNbO3:Fe crystals / L. Arizmendi, E.M. Miguel-Sanz de, M. Carrascosa // Optics Letters. - 1998. - V. 23. - I. 12. - Р. 960-963. doi: 10.1364/OL.23.000960.
  8. de Miguel-Sanz, E.M. Effect of the oxidation state and hydrogen concentration on the lifetime of thermally fixed holograms in LiNbO3:Fe / E.M. de Miguel-Sanz, M. Carrascosa, L. Arizmendi // Physical Review B.|- 2002. - V. 65. - I. 16. - Р. 1656101-1-1656101-7. doi: 10.1103/PhysRevB.65.165101.
  9. Bermúdez, V. Er incorporation into congruent LiNbO3 crystals / V. Bermúdez, M. Serrano, J. Tornero, E. Diéguez // Solid State Communications. - 1999. - V. 112. - I. 12. - P. 699-703. doi: 10.1016/S0038-1098(99)00419-6.
  10. Liu, J. Growth and optical properties of Pr-Mg co-doped LiNbO3 crystal using Bridgman method / J. Liu, A. Liu, Y. Chen et al. // Physica B: Condensed Matter. - 2022. - V. 624. - Art. № 413419. doi: 10.1016/j.physb.2021.413419.
  11. Алешина, Л.А. Структурные особенности легированных кристаллов ниобата лития / Л.А. Алешина, А.В. Кадетова, О.В. Сидорова // Труды КНЦ РАН: Химия и материаловедение. - 2018. - T. 9. - № 2-2.C. 493-498.
  12. Yang, C. Growth and properties of Pr3+ doped LiNbO3 crystal with Mg2+ incorporation: A potential material for quasi-parametric chirped pulse amplification / C. Yang, X. Tu, S. Wang et al. // Optical Materials. - 2020. V. 105. - Art. № 109893. - 7 p. DOI: /10.1016/j.optmat.2020.109893.
  13. Cabrera, J.M. Hydrogen in lithium niobate / J.M. Cabrera, J. Olivares, M. Carrascosa et al. // Advances in Physics. - 1996. - V. 45. - I. 5. - P. 349-392. doi: 10.1080/00018739600101517.
  14. Lеngyel, K. Growth, defect structure, and THz application of stoichiometric lithium niobate / K. Lengyel, Á. Péter, L. Kovács et al. // Applied Physics Reviews. - 2015. - V. 2. - I. 4. - Р. 040601-1-040601-28. doi: 10.1063/1.4929917.
  15. Arizmendi, L. Lifetime of thermally fixe holograms in LiNbO3 crystals doped with Mg and Fe / L. Arizmendi, F.J. López-Barberá // Applied Physics B. - 2007. - V. 86. - I. 1. - P. 105-109. doi: 10.1007/s00340-006-2417-5.
  16. Палатников, М.Н. Фундаментальные аспекты технологии сильно легированных кристаллов ниобата лития / М.Н. Палатников, Н.В. Сидоров, О.В. Макарова, И.В. Бирюкова. - Апатиты: КНЦ РАН, 2017. - 241 с.
  17. Сюй, А.В. Фоторефрактивные свойства и особенности строения нелинейно-оптического кристалла ниобата лития / А.В. Сюй, Н.В. Сидоров, Е.А. Антонычева. - Хабаровск: Изд-во ДВГУПС, 2011. - 107 с.
  18. Klauer, S. Influence of the H-D isotopic substitution on the protonic conductivity in LiNbO3 crystal / S. Klauer, M. Wöhlecke, S. Kapphan // Physical Review B. - 1992. - V. 45. - I. 6. - P. 2786-2799. doi: 10.1103/physrevb.45.2786.
  19. Kovács, L. On the lattice site of trivalent dopants and the structure of Mg2+ -OH- -M3+ defects in LiNbO3:Mg crystals / L. Kovács, L. Rebouta, J. C. Soarest et al.// Journal of Physics: Condensed Matter. - 1993. - V.5. № 7. - P. 781-794. doi: 10.1088/0953-8984/5/7/006.
  20. Xue, D. Dopant occupancy and structural stability of doped lithium niobate crystals/D. Xue, X. He// Physical Review B. - 2006. - V. 73. - I. 6. - P. 064113-1-064113-7. doi: 10.1103/PhysRevB.73.064113.
  21. Kovács, L. Hydroxyl ions in stoichiometric LiNbO3 crystals doped with optical damage resistant ions / L. Kovács, Zs. Szaller, K. Lеngyel, G. Corradi // Optical Materials. - 2014. - V. 37. - P. 55-58. doi: 10.1016/j.optmat.2014.04.043.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).