Modelling of radiation propagation in a photonic integrated circuit based on a polymer waveguide and phase-change material nanoparticles

Capa

Citar

Texto integral

Resumo

This paper presents the results of numerical modelling of optical radiation propagation in a SU-8 polymer waveguide and signal modulation at different phase states of an array of nanoparticles of the phase-change material Ge2Sb2Te5 ( GST ). It is shown how the transmitted radiation is modulated for different numbers of nanoparticles when placed on the top and at the edge of the waveguide. The simulation results show that in addition to the influence of the phase states (crystalline or amorphous) on the properties of the transmitted signal, in the case of nanoparticles not only reflection and absorption but also scattering of the material play a prominent role. The basic possibility of controlling the optical signal of telecommunication range passing through the interface by switching the optical active element based on nanoparticles of phase-change material is demonstrated. The concept of developing photonic integrated circuits proposed in this work is the cheapest of all known planar technologies of developing waveguide devices and allows realizing computing elements and architectures on its basis with a high degree of heterogeneous integration.

Sobre autores

Vitaly Ionin

National Research Centre «Kurchatov Institute»

Researcher

Vladimir Mikhalevsky

National Research Centre «Kurchatov Institute»

Researcher

Anton Burtsev

National Research Centre «Kurchatov Institute»

Email: murrkiss2009@yandex.ru
Researcher

Alexey Kiselev

National Research Centre «Kurchatov Institute»

Ph. D., Researcher

Alexey Nevzorov

National Research Centre «Kurchatov Institute»

Ph. D., Researcher

Nikolay Eliseev

National Research Centre «Kurchatov Institute»

Junior Researcher

Andrey Lotin

National Research Centre «Kurchatov Institute»

Ph. D., Deputy Head of the branch

Bibliografia

  1. Zhang, W. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing/ W. Zhang, R. Mazzarello, M. Wuttig, E. Ma // Nature Reviews Materials. - 2019. - V. 4. - I. 3. - P. 150-168. doi: 10.1038/s41578-018-0076-x.
  2. Phase change materials: science and applications / ed. by S. Raoux, M. Wutting. - New York: Springer Science+Business Media, LLC, 2009. - 450 p. doi: 10.1007/978-0-387-84874-7.
  3. Guo, P. A review of germanium-antimony-telluride phase change materials for non-volatile memories and optical modulators / P. Guo, A.M. Sarangan, I. Agha // Applied sciences. - 2019. - V. 9. - I. 3. - Art. № 530. - 26 p. doi: 10.3390/app9030530.
  4. Ovshinsky, S.R. Optical cognitive information processing-a new field / S.R. Ovshinsky // Japanese Journal of Applied Physics. - 2004. - V. 43. - I. 7B. - P. 4695-4699. doi: 10.1143/JJAP.43.4695.
  5. Lian, C. Photonic (computational) memories: tunable nanophotonics for data storage and computing / C. Lian, C. Vagionas, T. Alexoudi et. al. // Nanophotonics. - 2022. - V. 11. - I. 17. - P. 3823-3854. doi: 10.1515/nanoph-2022-0089.
  6. Abdollahramezani, S. Tunable nanophotonics enabled by chalcogenide phase-change materials / S. Abdollahramezani, O. Hemmatyar, H. Taghinejad et al.// Nanophotonics. - 2020. - V. 9. - I. 5. - P. 1189-1241. doi: 10.1515/nanoph-2020-0039.
  7. Han, S.-T. Photo-electroactive non-volatile memories for data storage and neuromorphic computing / S-T. Han, Y. Zhou. - Duxford: Woodhead Publishing, 2020. - 352 p. doi: 10.1016/C2019-0-00530-4
  8. Feldmann, J. All-optical spiking neurosynaptic networks with self-learning capabilities /j. Feldmann, N. Youngblood, C.D. Wright et al. //Nature. - 2019. - V. 569. - P. 208-214. doi: 10.1038/s41586-019-1157-8
  9. Yu, T. All-chalcogenide programmable all-optical deep neural networks / T. Yu, X. Ma, E. Pastor et al. // arXiv:2102.10398. - 2021. - 18 p. doi: 10.48550/arXiv.2102.10398.
  10. Sokolov, V.I. Routes to polymer-based photonics / V.I. Sokolov, G.V. Mishakov, V.Y. Panchenko, M.Y. Tsvetkov // Optical Memory and Neural Networks. - 2007. - V. 16. - I. 2. - P. 67-74. doi: 10.3103/S1060992X07020026.
  11. Ramirez, J.C. Low-loss modified SU-8 waveguides by direct laser writing at 405 nm /j.C. Ramirez, J.N. Schianti, M.G. Almeida et al. // Optical Materials Express. - 2017. - V. 7. - I. 7. - P. 2651-2659. doi: 10.1364/OME.7.002651.
  12. Суздалев, И.П. Нанотехнология: Физико-химия нанокластеров, наноструктур и наноматериалов / И.П. Суздалев. - М.: URSS, 2017. - 592 с.
  13. Casarin, B. Ultralow-fluence single-shot optical crystalline-to-amorphous phase transition in Ge-Sb-Te nanoparticles / B. Casarin, A. Caretta, B. Chen, et al. // Nanoscale. - 2018. - V. 10. - I. 35. - P. 16574-16580. doi: 10.1039/c8nr04350g.
  14. Caretta, A. Ultrafast response of Ge2Sb2Te5 nanoparticles: The benefits of low energy amorphization switching with the same read/write speed of bulk memories / A. Caretta, B. Casarin, B. Chen et al. //APL Materials. - 2023. - V. 11. - Art. № 071117. - P. 071117-1-071117-5. doi: 10.1063/5.0156207.
  15. Ionin, V.V. An optical synapse based on a polymer waveguide with a GST225 active layer / V.V. Ionin, A.V. Kiselev, A.A. Burtsev, et al.//Applied Physics Letters. - 2021. - V. 119. - I. 8. - Art. № 081105. - 5 p. doi: 10.1063/5.0063349
  16. Пат. 2788438 Российская Федерация, МПК G02F 1/29 (2006.01). Оптический синапс / Бурцев А.А., Ионин В.В., Китселев А.В, Лотин А.А., Минаев Н.В.; заявитель и патентообладатель Федеральное государственное учреждение "Федеральный научно-исследовательский центр "Кристаллография и фотоника" РАН. - № 2021133121; заявл. 15.11.21; опубл. 19.01.23, Бюл. № 2. - 12 с.
  17. Abdelghfar, A. Electrostatically tuned optical filters based on hybrid plasmonic-dielectric thin films for hyperspectral imaging / A. Abdelghfar, M.A. Mousa B.M. Fouad, et al. //Micromachines. - 2021. - V. 12. - I. 7. - Art. № 767. - 14 p. doi: 10.3390/mi12070767.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).