Interphaсe energy of aluminum crystals at the boundary with nonpolar organic liquids

Capa

Citar

Texto integral

Resumo

Understanding the energy characteristics at the metal-organic interface is of great importance for the development of equipment and technologies in various industries. In this regard, there is a great interest in studying the processes occurring at this interface. Particularly noteworthy is the rapid growth of studies on the properties of metal-organic framework structures, which is associated with the possibility of synthesizing these structures with the desired properties by varying the lengths of the organic molecules connecting the atoms of metals or their oxides, as well as by selecting the chemical composition. In this paper, the values of the interfacial energy at the boundaries of the faces of an aluminum crystal with organic liquids are obtained within the framework of the electron-statistical method, taking into account the polarization of metal ions and molecules of the organic liquid, as well as the dispersion interaction of Wigner-Seitz cells on the interface. The dependence of the interfacial energy and corrections to the interfacial energy on the permittivity of the liquid and the orientation of the metal crystal is obtained. It is found that the dispersion correction makes a positive contribution while the polarization correction reduces the interfacial energy.

Sobre autores

Aslan Apekov

North-Caucasus Center for Mathematical Research, North-Caucasus Federal University

Email: aslkbsu@yandex.ru
Ph. D., Deputy Director, North-Caucasus Center for Mathematical Research

Irina Shebzukhova

Kabardino-Balkarian State University named after H.M. Berbekov

Email: irina.shebzukhova@mail.ru
Dr. Sc., Professor, Professor of the Department of Theoretical and Experimental Physics

Liana Khamukova

North-Caucasus Center for Mathematical Research, North-Caucasus Federal University

Email: khamuk@mail.ru
Ph. D., Senior Researcher, Department of Mathematical Physics

Bibliografia

  1. Ryder, M.R. Nanoporous metal organic framework materials for smart applications / M.R. Ryder, J.-C. Tan // Materials Science and Technology. - 2014. - V. 30. - I. 13. - P. 1598-1612. doi: 10.1179/1743284714y.0000000550.
  2. Butova, V.V. Metal-organic frameworks: structure, properties, methods of synthesis and characterization / V.V. Butova, M.A. Soldatov, A.A. Guda et al. // Russian Chemical Reviews. - 2014. - V. 85. - № 3. - P. 280-307. doi: 10.1070/RCR4554.
  3. Prabhakaran, P.K. Aluminium doping composite metal-organic framework by alane nanoconfinement: Impact on the room temperature hydrogen uptake / P.K. Prabhakaran, L. Catoire, J. Deschamps // Microporous and Mesoporous Materials. - 2017. - V. 243. - P. 214-220. doi: 10.1016/j.micromeso.2017.02.032.
  4. Zeraati, M. Synthesis of Al-Based metal-organic framework in water with caffeic acid ligand and NaOH as linker sources with highly efficient anticancer treatment / M. Zeraati, A. Rahdar, D.I. Medina, G. Sargazi // Frontiers in Chemistry. - 2021. - V. 9. - Art. № 784461. - 9 p. doi: 10.3389/fchem.2021.784461
  5. Hu, Z. Luminescent metal-organic frameworks for chemical sensing and explosive detection / Z. Hu, B.J. Deibert, J. Li // Chemical Society Reviews. - 2014. - V. 43. - I. 16. - P. 5815-5840. doi: 10.1039/c4cs00010b.
  6. Sato, H. Photoactivation of a nanoporous crystal for on-demand guest trapping and conversion/ H. Sato, R. Matsuda, K. Sugimoto, M. Takata, S. Kitagawa // Nature Materials. - 2010. - V. 9. - P. 661-666. doi: 10.1038/nmat2808.
  7. Zhang, W. Ferroelectric metal-organic frameworks / W. Zhang, R.-G. Xiong // Chemical Reviews. - 2012. - V. 112. - I. 2. - P. 1163-1195. doi: 10.1021/cr200174w.
  8. Tu, J. Nonaqueous rechargeable aluminum batteries: progresses, challenges, and perspectives /j. Tu, W.-L. Song, H. Lei et al. // Chemical Reviews. - 2021. - V. 121. - I. 8. - P. 4903-4961. doi: 10.1021/acs.chemrev.0c01257.
  9. Elia, G.A. An overview and prospective on Al and Al-ion battery technologies / G.A. Elia, K.V. Kravchyk, M.V. Kovalenko et al. // Journal of Power Sources. - 2021. - V. 481. - Art. № 228870. - 22 p. doi: 10.1016/j.jpowsour.2020.228870.
  10. Barea, E. Toxic gas removal - metal-organic frameworks for the capture and degradation of toxic gases and vapours / E. Barea, C. Montoro, J. Navarro // Chemical Society Reviews. - 2014. - V. 43. - I. 16. - P. 5419-5430. doi: 10.1039/c3cs60475f.
  11. Xiao, B. High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework / B. Xiao, P.S. Wheatley, X. Zhao et al. // Journal of the American Chemical Society. - 2007. - V. 129. - I. 5. - P. 1203-1209. doi: 10.1021/ja066098k.
  12. Horcajada, P. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging / P. Horcajada, T. Chalati, C. Serre et al. // Nature Materials. - 2010. - V. 9. - P. 172-178. doi: 10.1038/nmat2608.
  13. Horcajada, P. Metal-Organic Frameworks in Biomedicine / P. Horcajada, R. Gref, T. Baati et al. // Chemical Reviews. - 2012. - V. 112. - I. 2. - P. 1232-1268. doi: 10.1021/cr200256v.
  14. Bloch, E.D. Gradual release of strongly bound nitric oxide from Fe2(NO)2. / E.D. Bloch, W.L. Queen, S. Chavan et al. // Journal of the American Chemical Society. - 2015. - V. 137. - I. 10. - P. 3466-3469. doi: 10.1021/ja5132243.
  15. Qiu, S. Metal-organic framework membranes: from synthesis to separation application. / S. Qiu, M. Xue, G. Zhu // Chemical Society Reviews. - 2014. - V. 43. - I. 16. - P. 6116-6140. doi: 10.1039/C4CS00159A.
  16. Rodenas, T. Metal-organic framework nanosheets in polymer composite materials for gas separation / T. Rodenas, I. Luz, G. Prieto et al. // Nature Materials. - 2015. - V. 14. - P. 48-55. doi: 10.1038/nmat4113.
  17. Gabuda, S.P. Supramolecular interactions and structural transformations in the metal-organic sorbent-acetone nanoreactor system / S.P. Gabuda, S.G. Kozlova, D.N. Dybtsev, V.P. Fedin // Journal of Structural Chemistry. - 2009. - V. 50. - I. 5. - P. 887-894. doi: 10.1007/s10947-009-0132-x.
  18. Gabuda, S.P. Quantum rotations and chiral polarization of qubit prototype molecules in a highly porous metal-organic framework: 1H NMR T1 study / S.P. Gabuda, S.G. Kozlova, D.G. Samsonenko, D.N. Dybtsev, V.P. Fedin // Journal of Physical Chemistry C. - 2011. - V. 115. - I. 42. - P. 20460-20465. doi: 10.1021/jp206725k.
  19. Xu, X. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries / X. Xu, R. Cao, S. Jeong, J. Cho // Nano Letters. - 2012. - V. 12. - I. 9. - P. 4988-4991. doi: 10.1021/nl302618s.
  20. Yang, S.J. Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal-organic framework / S.J. Yang, S. Nam, T. Kim et al. // Journal of the American Chemical Society. - 2013. - V. 135. - I. 20. - P. 7394-7397. doi: 10.1021/ja311550t.
  21. Langseth, E. Synthesis and characterization of Al@MOF materials / E. Langseth, O. Swang, B. Arstadet al. // Materials Chemistry and Physics. - 2019. - V. 226. - P. 220-225. doi: 10.1016/j.matchemphys.2019.01.009.
  22. Manikkoth, M. Aluminium alloys and composites for electrochemical energy systems / M. Manikkoth, S.K. Kannan, J.M. Gladis, T.P.D. Rajan // Progress in Materials Science. - 2024. - V. 146. - Art. № 101322. - 89 p. doi: 10.1016/j.pmatsci.2024.101322
  23. Lin, M.-C. An ultrafast rechargeable aluminium-ion battery / M.-C. Lin, M. Gong, B. Lu et al. // Nature. - 2015. - V. 520. - P. 325-328. doi: 10.1038/nature14340.
  24. Miller, W.S. Recent development in aluminium alloys for the automotive industry / W.S. Miller, L. Zhuang, J. Bottema et al. // Materials Science and Engineering: A. - 2000. - V. 280. - I. 1. - P. 37-49. doi: 10.1016/S0921-5093(99)00653-X.
  25. Апеков, А.М. Ориентационная зависимость межфазной энергии низкотемпературной модификации титана на границе с органической жидкость / А.М. Апеков, И.Г. Шебзухова // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2022. - Вып. 14. - С. 17-23. doi: 10.26456/pcascnn/2022.14.017.
  26. Apekov, A.M.Interface energy of crystal faces of IIА-type metals at boundaries with nonpolar organic liquids, allowing for dispersion and polarization corrections / A.M. Apekov, I.G. Shebzukhova // Bulletin of Russian Academy of Science. Physics. - 2019. - V. 83. - I. 6. - P. 760-763. doi: 10.3103/S1062873819060078.
  27. Apekov, A.M. Polarization correction to the interfacial energy of faces of alkali metal crystals at the borders with a nonpolar organic liquid / A.M. Apekov, I.G. Shebzukhova // Bulletin of Russian Academy of Science. Physics. - 2018. - V. 82. - I. 7. - P. 789-792. doi: 10.3103/S1062873818070067.
  28. Апеков, А.М. Поляризационная и дисперсионная поправки к межфазной энергии граней кристаллов низкотемпературных модификаций кальция и бария на границе с неполярными органическими жидкостями / А.М. Апеков, И.Г. Шебзухова // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2018. - I. 10. - P. 20-26. doi: 10.26456/pcascnn/2018.10.020.
  29. Shebzukhova, I.G. Orientation dependence of the interfacial energies of chromium and α-iron crystals at boundaries with nonpolar organic liquids / I.G. Shebzukhova, A.M. Apekov, Kh.B. Khokonov // Bulletin of Russian Academy of Science. Physics. - 2017. - V. 81. - I. 5. - P. 605-607. doi: 10.3103/S1062873817050173.
  30. Shebzukhova, I.G. Anisotropy of the interface energy of IA and IB metals at a boundary with organic liquids / I.G. Shebzukhova, A.M. Apekov, Kh.B. Khokonov // Bulletin of Russian Academy of Science. Physics. - 2016. - V. 80. - I. 6. - P. 657-659. doi: 10.3103/S1062873816060307.
  31. Апеков, А.М. Вклад дисперсионного взаимодействия в межфазную энергию кристаллов кобальта на границе с неполярными органическими жидкостями / А.М. Апеков, И.Г. Шебзухова // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2023. - V. 15. - P. 231-238. doi: 10.26456/pcascnn/2023.15.231.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).