Study of the influence of sintering additives and vacuum sintering conditions on optical properties of LuAG:Er (1 at.%) ceramics

Capa

Citar

Texto integral

Resumo

In this work, ceramic samples based on lutetium-aluminum garnet doped with erbium (content 1 at.%) were manufactured. In the manufacture of ceramic material, the chemical precipitation method was chosen. The influence of two types of sintering additives, MgO and CaO , on the microstructure and optical properties of ceramic samples obtained at vacuum sintering temperatures of 1800, 1850, 1875°C was studied. The article discusses in detail how the microstructure and optical transmission of ceramics with sintering additives MgO and CaO change at different vacuum sintering temperatures. It was found that magnesium oxide allows to achieve a higher optical transparency of ceramics (about 80%), while calcium oxide more effectively inhibits the grain growth. An increase in the sintering temperature for samples with MgO from 1800 to 1850°C contributed to an increase in the light transmission of samples from 10 to 80% and an increase in grain size from 1,80 to 3,03 microns. Earlier no such a phenomenon was not observed for samples with CaO , samples obtained at sintering temperatures of 1850 and 1875°C had approximately the same microstructure, containing some residual microporosity.

Sobre autores

Evgeniy Medyanik

North Caucasus Federal University

Email: miedianik84@mail.ru
Researcher, Ceramics Sintering Sector of the Research Laboratory of Technology of Advanced Materials and Laser Media of the Scientific Laboratory Complex of Clean Rooms

Fedor Malyavin

North Caucasus Federal University

Viacheslav Lapin

North Caucasus Federal University

Ph. D., Senior Researcher, Sector of Physical and Chemical Methods of Research and Analysis of the Research Laboratory of Technology of Advanced Materials and Laser Media of the Scientific Laboratory Complex of Clean Rooms

Alexander Kravtsov

North Caucasus Federal University

Ph. D., Head of the Nanopowder Synthesis Sector of the Research Laboratory of Technology of Advanced Materials and Laser Media of the Scientific Laboratory Complex of Clean Rooms

Victoria Suprunchuk

North Caucasus Federal University

Ph. D., Senior Researcher, Nanopowder Synthesis Sector of the Research Laboratory of Technology of Advanced Materials and Laser Media of the Scientific Laboratory Complex of Clean Rooms

Ludmila Tarala

North Caucasus Federal University

Researcher, Nanopowder Synthesis Sector of the Research Laboratory of Technology of Advanced Materials and Laser Media of the Scientific Laboratory Complex of Clean Rooms

Bibliografia

  1. Wang, S.F. Transparent ceramics: processing, materials and applications / S.F. Wang, J. Zhang, D.W. Luo et al. // Progress in Solid State Chemistry. - 2012. - V. 41. - I. 1-2. - P. 20-54. doi: 10.1016/j.progsolidstchem.2012.12.002.
  2. Kravtsov, A.A. Optical and luminescent properties of quasi-stoichiometric YAG: Cr3+ ceramics / A.A. Kravtsov, V.A. Tarala, F.F. Malyavin et al. // Journal of the European Ceramic Society. - 2023. - V. 43. - I. 15. - P. 7085-7095. doi: 10.1016/j.jeurceramsoc.2023.07.058.
  3. Jiang, N. Fabrication and laser performance of planar waveguide LuAG/Yb:LuAG/LuAG ceramics / N. Jiang, Y. Zhao, Z. Zhu et al. // Optical Materials. - 2019. - V. 89. - P. 149-156. doi: 10.1016/j.optmat.2019.01.033.
  4. Zhang, S. Passively Q-switched Er:LuAG laser at 1.65 μm using MoS2 and WS2 saturable absorbers / S. Zhang, L. Guo, M. Fan et al. // IEEE Photonics Journal. - 2017. - V. 9. - № 3. - P. 1-7. doi: 10.1109/JPHOT.2017.2691740.
  5. Esposito, L. Multilayered YAG-Yb:YAG ceramics: manufacture and laser performance / L. Esposito, J. Hostaša, A. Piancatelli et al. // Journal of Materials Chemistry C. - 2014. - V. 2. - I. 47. - P. 10138-10148. doi: 10.1039/C4TC01544D.
  6. Quan, J. Growth and fluorescence characteristics of Er:LuAG laser crystals /j. Quan, X. Yang, S. Long et al. // Journal of Crystal Growth. - 2019. - V. 507. - P. 321-326. doi: 10.1016/j.jcrysgro.2018.11.037.
  7. Zhou, T. Toward vacuum sintering of YAG transparent ceramic using divalent dopant as sintering aids: Investigation of microstructural evolution and optical property / T. Zhou, L. Zhang, Z. Li et al. // Ceramics International. - 2016. - V. 43. - I. 3. - P. 3140-3146. doi: 10.1016/j.ceramint.2016.11.131.
  8. Malyavin, F.F. Influence of the ceramic powder morphology and forming conditions on the optical transmittance of YAG:Yb ceramics / F.F. Malyavin, V.A. Tarala, S.V. Kuznetsov et al. // Ceramics International. - 2019. - V. 45. - I. 4. - P. 4418-4423. doi: 10.1016/j.ceramint.2018.11.119.
  9. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). - Режим доступа: www.url: https://www.icdd.com/pdf-2. - 15.06.2024.
  10. Muñoz-García, A.B. Antisite defects in Ce-doped YAG (Y3Al5O12): First-principles study on structures and 4f-5d transitions / A.B. Muñoz-García, Z. Barandiarán, L. Seijo // Journal of Materials Chemistry. - 2012. - V. 22. - I. 37. - P. 19888-19897. doi: 10.1039/C2JM34479C.
  11. Liu, B. Formation energies of antisite defects in Y3Al5O12: a first-principles study / B. Liu, M. Gu, X. Liu et al. // Applied Physics. - 2009. - V. 94. - I. 12. - P. 121910-1-121910-3. doi: 10.1063/1.3109799.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).