Comparative studies of photoluminescent and optical properties, concentration of OH- groups in double-doped LiNbO3: Er:Zn crystals

Cover Page

Cite item

Full Text

Abstract

A comparative analysis of the photoluminescent properties, concentration of OH- -groups and optical quality of double-doped crystals obtained from charges of different genesis has been performed. In a LiNbO3:Er (0,53 mol.%): Zn (4,02 mol.%) crystal obtained by solid-phase doping, the content of OH- -groups is higher than in a LiNbO3:Er (0,75 mol.%): Zn (3,82 mol.%) crystal obtained by homogeneous doping. These changes occur as a result of the simultaneous formation of two types of complex defects in the LiNbO3:Er (0,53 mol.%): Zn (4,02 mol.%) crystal structure: ZnNb3--OH and VLi-OH . It has been established that photoluminescence in the visible region is caused by radiative transitions of Er 3+ without the manifestation of the host’s own luminescence in the studied crystals. For the LiNbO3:Er:Zn crystal obtained by solid-phase doping, the luminescence intensity is 77% higher than in the crystal obtained by homogeneous doping. This may be due to the participation of OH- -groups in the energy transfer between the host and the Er 3+ ions.

About the authors

Lubov' A. Bobreva

Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials - Subdivision of the Federal Research Centre «Kola Science Centre of the RAS»

Email: l.bobreva@ksc.ru
Ph. D., Researcher, Vibrational Spectroscopy Sector of the Electronic Engineering Materials Laboratory

Roman A. Titov

Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials - Subdivision of the Federal Research Centre «Kola Science Centre of the RAS»

Ph. D., Junior Researcher, Vibrational Spectroscopy Sector of the Electronic Engineering Materials Laboratory

Maxim V. Smirnov

Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials - Subdivision of the Federal Research Centre «Kola Science Centre of the RAS»

Ph. D., Researcher, Vibrational Spectroscopy Sector of the Electronic Engineering Materials Laboratory

Irina V. Biryukova

Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials - Subdivision of the Federal Research Centre «Kola Science Centre of the RAS»

Ph. D., Leading Researcher, Materials of the Electronic Engineering Laboratory

Sofja M. Masloboeva

Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials - Subdivision of the Federal Research Centre «Kola Science Centre of the RAS»

Ph. D., Assistant Professor, Leading Researcher, Materials of the Electronic Engineering Laboratory

Alexander Yu. Pyatyshev

P.N. Lebedev Physical Institute of the RAS

Ph. D., Senior Researcher, Laboratory of Raman Light Scattering

Nikolay V. Sidorov

Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials - Subdivision of the Federal Research Centre «Kola Science Centre of the RAS»

Dr. Sc., Professor, Chief Researcher and as Head of Vibrational Spectroscopy Sector of the Electronic Engineering Materials Laboratory

Mikhail N. Palatnikov

Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials - Subdivision of the Federal Research Centre «Kola Science Centre of the RAS»

Dr. Sc., Chief Researcher and as Head of the Electronic Engineering Materials Laboratory

References

  1. Chen, F. 2.7 μm mid-infrared Er-doped thin-film LiNbO3-on-insulator photonic wire laser / F. Chen, Q. Xu, Z.-X. Chen et al. // Optical Materials. - 2023. - V. 140. - Art. № 113844. - 6 p. doi: 10.1016/j.optmat.2023.113844.
  2. Muñoz, I.C. Synthesis and thermoluminescence of erbium-activated lithium niobate / I.C. Muñoz, M.A. Landavazo, F. Brown et al. // Applied Radiation and Isotopes. - 2018. - V. 142. - P. 64-70. doi: 10.1016/j.apradiso.2018.09.020.
  3. Dai, L. Effect of zirconium content on defect structure and light damage resistance of Zr:Dy:LiNbO3 / L. Dai, L. Zhang, H. Wang, N. Lai // Crystal Research Technology - 2024. - V. 59. - I. 6. - Art. № 2300255. - 9 p. doi: 10.1002/crat.202300255.
  4. Сидоров, Н.В. Ниобат лития: дефекты, фоторефракция, колебательный спектр, поляритоны / Н.В. Сидоров, Т.Р. Волк, Б.Н. Маврин, В.Т. Калинников. - М.: Наука, 2003. - 255 с.
  5. Lеngyel, K. Growth, defect structure, and THz application of stoichiometric lithium niobate / K. Lengyel, Á. Péter, L. Kovács et al. // Applied Physics Reviews. - 2015. - V. 2. - I. 4. - Р. 040601-1-040601-28. doi: 10.1063/1.4929917.
  6. Iyi, N.Comparative study of defect structures in lithium niobate with different compositions / N. Iyi, K. Kitamura, F. Izumi et al. // Journal of Solid State Chemistry. - 1992. - V. 101. - I. 2.- P. 340-352. doi: 10.1016/0022-4596(92)90189-3.
  7. Палатников, М.Н. Фундаментальные аспекты технологии сильно легированных кристаллов ниобата лития / М.Н. Палатников, Н.В. Сидоров, О.В. Макарова, И.В. Бирюкова. - Апатиты: КНЦ РАН, 2017. - 241 с.
  8. Zhao, L.-J. Enhancement of Er3+ Luminescence in LiNbO3:Mg / L.-J. Zhao, J. Yang, J.-J. Xu et al. // Crystals. Chinese Physics Letters. - 2001. - V. 18. - I. 9.- Р. 1205-1207. doi: 10.1088/0256-307X/18/9/316.
  9. Biryukova, I.V. Study of the effect of dopant concentration on the optical uniformity and photorefractive properties of LiNbO3:Er:Zn single crystals / I.V. Biryukova, R.A. Titov, N.A. Teplyakova et al. // Technical Physics. - 2023. - V. 68. - I. 11. - P. 1459-1467. doi: 10.61011/TP.2023.11.57496.162-23.
  10. Masloboeva, S.M. Preparation and characterization of lithium niobate single crystals doped with zinc and erbium / S.M. Masloboeva, I.N. Efremov, I.V. Biryukova et al. // Inorganic Materials. - 2021. - V. 57. - I. 7. - P. 701-709. doi: 10.1134/S0020168521070116.
  11. Sommerfeldt, R. The light-induced charge transport in LiNbO3:Mg,Fe crystals / R. Sommerfeldt, L. Holtman, E. Krätzig, B.C. Grabmaier // Ferroelectrics. - 1989. - V. 92. - I. 1. - P. 219-225. doi: 10.1080/00150198908211329.
  12. Tsuboi, T. Spectral properties of Yb3+ ions in LiNbO3 single crystals: influences of other rare-earth ions, OH- ions, and γ-irradiation / T. Tsuboi, S.M. Kaczmarek, G. Boulon // Journal of Alloys and Compounds. - 2004. - V. 380. - I. 1-2. - Р. 196-200. doi: 10.1016/J.JALLCOM.2004.03.043.
  13. Mandari, K.K. Rare earth metal Gd influenced defect sites in N doped TiO2: defect mediated improved charge transfer for enhanced photocatalytic hydrogen production / K.K. Mandari, A.K.R. Police, J.Y. Do et al. // International Journal of Hydrogen Energy. - 2018. - V. 43. - I. 4. - Р. 2073-2082. doi: 10.1016/J.IJHYDENE.2017.12.050.
  14. Zhang, D.-L. Er3+ upconversion fluorescence of ErNbO4 phosphor for optical temperature sensing / D.-L. Zhang, Z.-P. Hou, F. Han et al. // IEEE Photonics Technology Letters. - 2014. - V. 26. - I. 16. - P. 1601-1604. doi: 10.1109/LPT.2014.2328094.
  15. Zhang, D.-L. Absorption and emission characteristics of Er3NbO7 phosphor: a comparison with ErNbO4 phosphor and Er:LiNbO3 single crystal / D.-L. Zhang, P.-R. Hua, Y.-M. Cui et al. // Journal of Luminescence. - 2007. - V. 127. - I. 2. - P. 453-460. doi: 10.1016/j.jlumin.2007.02.035.
  16. Runciman, W.A. Absorption and fluorescence spectra of ions in crystals / W.A.Runciman // Reports on Progress in Physics. - 1958. - V. 21. - I. 1. - P. 30-58. doi: 10.1088/0034-4885/21/1/302.
  17. Sidorov, N.V. Photoelectric fields and band gap in doped lithium niobate crystals / N.V. Sidorov, M.N. Palatnikov, N.A. Teplyakova // Inorganic Materials. - 2018 - V. 54 - I. 6 - P. 581-584. doi: 10.1134/S0020168518060134.
  18. Dai, S. Concentration quenching in erbium-doped tellurite glasses / S. Dai, C. Yu, G. Zhou, et al. // Journal of Luminescence. - 2006. - V. 117. - I. 1. - P 39-45. doi: 10.1016/j.jlumin.2005.04.003.
  19. Cabrera, J.M. Hydrogen in lithium niobate /j.M. Cabrera, J. Olivares, M. Carrascosa et al. // Advances in Physics. - 1996. - V. 45. - I. 5. - P. 349-392. doi: 10.1080/00018739600101517.
  20. Klauer, S. Influence of the H-D isotopic substitution on the protonic conductivity in LiNbO3 crystal / S. Klauer, M. Wöhlecke, S. Kapphan // Physical Review B. - 1992. - V. 45. - I. 6. - P. 2786-2799. doi: 10.1103/physrevb.45.2786.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).