DLP 3D PRINTING OF CORUNDUM CERAMICS: DEVELOPMENT OF TEMPERATURE-TIME FIRING MODES AND PHYSICAL MECHANICAL PROPERTIES OF SINTERED CERAMICS OBTAINED BY THE ADDITIVE METHOD

Cover Page

Cite item

Full Text

Abstract

The paper shows the use of projection stereolithographic 3D printing by digital light processing (DLP) to produce VTC-95-1 corundum ceramics. Based on data from thermogravimetric (TG) and differential scanning calorimetric (DSC) analyses, temperature regimes of debinding and clinkering have been developed. It is shown that graded debinding with a heating rate of 0,4...0,5 °C/min and exposures at 300, 375 and 470 °C, as well as subsequent clinkering at 1600 °C, ensured the achievement of a relative density of up to 95 % of the theoretical (3,47 ± 0,02 g/cm3). The water absorption was 0,69 ± 0,19 %, which indicates the predominance of closed porosity in sintered ceramics. The tensile strength during three-point bending of sintered samples ranged from 180 to 250 MPa, depending on the orientation of the layers relative to the loading vector: the maximum values (250 ± 30 MPa) were placed on record when exposed to a load along the printing axis. The Vickers hardness was 850 ± 25 HV. According to the results of the microstructural analysis, it was found that the developed heat treatment mode ensures the complete removal of the polymer binder and provides the production of sintered ceramics with a uniform grain size distribution, with an average grain size of 5,1 microns. Thus, the totality of the results obtained confirms the applicability of the considered additive method for forming the geometry of VTC-95 corundum ceramics.

About the authors

Yanis Yur'evich Verhoshanskiy

National Research Tomsk State University

Email: verkhoshanskiy@yandex.ru
ORCID iD: 0000-0002-5550-9643
SPIN-code: 8962-8239
Scopus Author ID: 57657658400
Faculty of Physics and Technology

Dmitriy Aleksandrovich Tkachev

Email: verkhoshanskiy@yandex.ru
ORCID iD: 0000-0003-1969-2927

Alexandr Igorevich Temirgaliev

Author for correspondence.
Email: verkhoshanskiy@yandex.ru
ORCID iD: 0009-0009-6397-0462

References

  1. Верхошанский Я.Ю., Ткачев Д.А., Темиргалиев А.И. Разработка состава на основе корундовой керамики ВК-95 для DLP 3D печати // Южно-Сибирский научный вестник. 2024. № 6 (58). С. 180−189. doi: 10.25699/SSSB.2024.58.6.027. EDN CWQEFB.
  2. Zhang K. Effects of solid loading on stereolithographic additive manufactured ZrO2 ceramic: A quantitative defect study by X-ray computed tomography // Ceram. Int. Elsevier BV, 2021. Т. 47, № 17. С. 24353–24359.
  3. Патент на изобретение RU:2685211:C2 USA. Жидкая фотополимеризующаяся композиция для лазерной стереолитографии / Гуревич Я.М.
  4. Gao Y., Ding J. Low solid loading, low viscosity, high uniform shrinkage ceramic resin for stereolithography based additive manufacturing // Procedia Manuf. Elsevier BV. 2020. Т. 48. С. 749–754.
  5. Yu X. Significantly improved sintering shrinkage of heavy calcium carbonate ceramic cores by binder jetting using Al powder additive // Ceram. Int. Elsevier BV, 2024. Т. 50, № 21. С. 40922–40931.
  6. ВК 95. 2024. (Электронный ресурс) URL: https://omegaceramic.ru/vk-95-1/ (дата обращения: 08.04.2025).
  7. Патент на изобретение RU:2641683:C1 USA. Способ получения керамических изделий сложной объемной формы / Буяков А.С.
  8. Promakhov V. V. On the possibility to fabricate ceramics using fused deposition modeling. 2016.
  9. Маликов Е.В., Непочатов Ю.К., Плетнев П.М. Влияние добавок оксидов иттрия и магния на характеристики корундовой бронекерамики // Огнеупоры и техническая керамика. 2013. № 4−5. С. 35−39. EDN UEAYYR.
  10. Liu H. H. Effects of MgO and Y2O3 on the microstructure and mechanical properties of Al2O3 ceramics // Key Engineering Materials. 2014. Т. 589. С. 572−577.
  11. Jia X. Enhanced thermal shock resistance of Al2O3, MgO castables with MgAl2O4 interfacial layer between aggregate and matrix // Ceram. Int. Elsevier BV, 2024.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).