DEVELOPMENT OF PULSED LASER DEPOSITION PROCESS IN NANODIMENTIONAL STRUCTURES
- Authors: Shupenev A.E.1, Grigoryants A.G.1
-
Affiliations:
- Bauman Moscow State Technical University
- Issue: No 5 (167) (2025)
- Pages: 15-21
- Section: Additive technologies and laser processing
- URL: https://ogarev-online.ru/2223-4608/article/view/303624
- DOI: https://doi.org/10.30987/2223-4608-2025-5-15-21
- ID: 303624
Cite item
Full Text
Abstract
Promising directions of PLD method application are presented: high-temperature superconductivity, carbon nanostructures, thermoelectric structures and topological insulators based on bismuth telluride. Vacuum physical deposition of thin films (PVD) technologies, such as pulsed laser deposition (PLD), play an important part in microelectronics and other industries. PLD has been actively developed since the 1960s, becoming a powerful tool for creating nanoscale films and high-temperature superconductors. One of the most important achievements of PLD was the production of a high-quality film of the high-temperature superconductor YBa2Cu3O7, opening up new opportunities in the field of superconductors. The PLD method has a unique combination of properties that provide high versatility and broad research potentialities. The key feature of the PLD method is the powerful (more than 1 MW/cm2) impact on the target with short (less than 30 ns) pulses. The method is based on evaporation of a target by a laser beam and deposition of the material on a substrate in a vacuum environment. A special feature of PLD is the high accuracy of control of the composition and structure of deposited materials, which makes it unique among other PVD methods. PLD is also widely used to produce carbon nanostructures, including graphene and diamond-like coatings (DLCs), which find applications in various fields, from supercapacitors to medical implants. In addition, the PLD method has been successfully applied to the formation of thin-film thermoelectric materials based on bismuth telluride, which are used in sensors and temperature stabilization systems. Wide versatility and efficiency of PLD make it a key tool in modern research and development of new materials in microelectronics, quantum technologies and energy.
About the authors
Alexandr Evgen'evich Shupenev
Bauman Moscow State Technical University
Email: ash@bmstu.ru
candidate of technical sciences
Aleksandr Grigor'evich Grigoryants
Bauman Moscow State Technical University
Email: mt12@bmstu.ru
department “Laser Technology”, professor, doctor of technical sciences
References
- Askar’Yan G.A., Moroz E.M. Pressure on evaporation of matter in a radiation beam // Soviet Journal of Experimental and Theoretical Physics. 1963. Vol. 16. P. 1638.
- Honig R.E., Woolston J.R. Laser-induced emission of electrons, ions, and neutral atoms from solid surfaces // Appl. Phys. Lett. 1963. Vol. 2, № 7. P. 138–139.
- Lichtman D., Ready J.F. Laser Beam Induced Electron Emission // Phys. Rev. Lett. American Physical Society, 1963. Vol. 10, № 8. P. 342–345.
- Ready J.F. Development of plume of material vaporized by giant-pulse laser // Appl. Phys. Lett. American Institute of Physics, 1963. Vol. 3, № 1. P. 11–13.
- Smith H.M., Turner A.F. Vacuum Deposited Thin Films Using a Ruby Laser // Appl. Opt. 1965. Vol. 4, № 1. P. 147.
- Аристов В. Фокусирующие свойства профилированных многослойных рентгеновских зеркал // Письма в ЖЭТФ. № 4. 1986. С. 207–209.
- Gaponov S. et al. Long-wave X-ray radiation mirrors // Optics communications. Elsevier, 1981. Vol. 38, № 1. P. 7–9.
- Бояков В.М. Напыление пленок химических элементов с помощью лазера на неодимовом стекле // Квантовая электроника. № 7. 1978. С. 1582–1584.
- Dijkkamp D. Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material // Appl. Phys. Lett. 1987. Vol. 51, № 8. P. 619–621.
- Хайдуков Е. Зондовые исследования лазерного эрозионного факела при абляции кремния в вакууме // Журнал технической физики. Федеральное государственное бюджетное учреждение науки Физико-технический…, № 4. 2010. С. 59–63.
- Irimiciuc S.A. Langmuir Probe Technique for Plasma Characterization during Pulsed Laser Deposition Process // Coatings. 2021. Vol. 11, № 7. P. 762.
- Hansen T.N., Schou J., Lunney J.G. Langmuir probe study of plasma expansion in pulsed laser ablation // Applied Physics A: Materials Science & Processing. 1999. Vol. 69, № 7. P. S601–S604.
- Drung D. Highly sensitive and easy-to-use SQUID sensors // IEEE Transactions on Applied Superconductivity. IEEE, 2007. Vol. 17, № 2. P. 699–704.
- Шупенев А. et al. Лазерная обработка поверхностей пластин теплообменников DLC-покрытиями // Электрометаллургия. 2021. № 5. С. 23–30.
- Григорьянц А.Г., Мисюров А.И., Башков В.М., Шупенев А.Е., Миронов Ю.М. Анализ поверхности тонких пленок Bi2Te3 осажденных методом импульсной лазерной абляции // Наука и образование. 2011. № 10.
- Shupenev A. Bismuth-Telluride-Based Radiation Thermopiles Prepared by Pulsed Laser Deposition // Semiconductors. 2019. Vol. 53, № 6. P. 747–751.
- Shupenev A.E., Korshunov I.S., Grigoryants A.G. On the Pulsed-Laser Deposition of Bismuth-Telluride Thin Films on Polyimide Substrates // Semiconductors. 2020. Vol. 54, № 3. P. 378–382.
- Shupenev A. et al. Laser surface treatment of heat exchanger plates with DLC coatings // Electrometallurgy. 2021, no. 5, pp. 23–30.
Supplementary files

