Pharmacogenetics of warfarin: A literature review
- Authors: Izmozherova N.V.1, Shambatov M.A.1, Popov A.A.1, Zhuk D.E.1, Solodchenko V.A.1
-
Affiliations:
- Ural State Medical University
- Issue: Vol 15, No 3 (2024)
- Pages: 211-220
- Section: Reviews
- URL: https://ogarev-online.ru/2221-7185/article/view/281611
- DOI: https://doi.org/10.17816/CS631885
- ID: 281611
Cite item
Full Text
Abstract
Warfarin is an oral indirect anticoagulant that is widely used for the prevention of thromboembolic events. Pharmacogenetic testing is the most promising approach to personalizing warfarin treatment. In this review, we aimed to summarize how the patients’ genetic predispositions affect the pharmacokinetics of warfarin, which determines the different dosing regimens for patients. To correctly interpret data in clinical settings, algorithms for selecting the optimal dosing regimen need to be developed that consider the patient’s age, sex, weight, height, health status, and genetic characteristics. These algorithms could help determine the optimal dose, enhance patient adherence to treatment, and increase the physician’s confidence in the treatment safety. Furthermore, although algorithms that consider SNPs in the CYP2C9, VKORC1, and CYP4F2 genes are more effective in predicting warfarin doses, their effectiveness varies according to race.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Nadezhda V. Izmozherova
Ural State Medical University
Author for correspondence.
Email: nadezhda_izm@mail.ru
ORCID iD: 0000-0001-7826-9657
SPIN-code: 4738-3269
Scopus Author ID: 19337559100
MD, Dr. Sci. (Medicine), assistant professor
Russian Federation, 3 Repina str., 620028 YekaterinburgMuraz A. Shambatov
Ural State Medical University
Email: shambatovma@gmail.com
ORCID iD: 0000-0001-7312-415X
SPIN-code: 6693-5347
Scopus Author ID: 57216921642
MD, assistant
Russian Federation, 3 Repina str., 620028 YekaterinburgArtem A. Popov
Ural State Medical University
Email: art_popov@mail.ru
ORCID iD: 0000-0001-6216-2468
SPIN-code: 5083-9389
Scopus Author ID: 24390984000
MD, Dr. Sci. (Medicine), assistant professor
Russian Federation, 3 Repina str., 620028 YekaterinburgDaria E. Zhuk
Ural State Medical University
Email: zhukdaria-2002@mail.ru
ORCID iD: 0009-0000-0046-433X
SPIN-code: 3371-2489
student
Russian Federation, 3 Repina str., 620028 YekaterinburgViktoria A. Solodchenko
Ural State Medical University
Email: vika.solodch@mail.ru
ORCID iD: 0009-0008-2464-2071
SPIN-code: 7711-2598
student
Russian Federation, 3 Repina str., 620028 YekaterinburgReferences
- Martsevich SYu, Lukina YV. Warfarin and its importance in the era of new oral anticoagulants. Issues of monitoring the effectiveness and safety of treatment. Rational Pharmacotherapy in Cardiology. 2017;13(5):699–705. doi: 10.20996/1819-6446-2017-13-5-699-705
- Sychev DA, Kukes VG. Domestic experience in the use of pharmacogenetic testing to personalize the dosage of warfarin: a real opportunity for a Russian doctor. Consilium Medicum. 2013;15(10):111–115. EDN: RRWGCZ
- Sychev DA, Ivashchenko DV, Rusin IV. Impact of pharmacogenetic testing on the risk of bleedings and excessive hypocoagulation episodes in the use of warfarin: The first meta-analysis of Russian prospective studies. Terapevticheskii Arkhiv. 2014;86(4):64–71. EDN: SVPGNB
- Biss TT, Avery PJ, Brandão LR, et al. VKORC1 and CYP2C9 genotype and patient characteristics explain a large proportion of the variability in warfarin dose requirement among children. Blood. 2012;119(3):868–873. doi: 10.1182/blood-2011-08-372722
- Kim SY, Kang JY, Hartman JH, et al. Metabolism of Rand S-warfarin by CYP2C19 into four hydroxywarfarins. Drug Metab Lett. 2012;6(3):157–164. doi: 10.2174/1872312811206030002
- Almas T, Muhammad F, Siddiqui L, et al. Safety and efficacy of direct oral anticoagulants in comparison with warfarin across different BMI ranges: A systematic review and meta-analysis. Ann Med Surg (Lond). 2022;77:103610. doi: 10.1016/j.amsu.2022.103610
- Tideman PA, Tirimacco R, St John A, Roberts GW. How to manage warfarin therapy. Aust Prescr. 2015;38(2):44–48. doi: 10.18773/austprescr.2015.016
- Duarte JD, Cavallari LH. Pharmacogenetics to guide cardiovascular drug therapy. Nat Rev Cardiol. 2021;18(9):649–665. doi: 10.1038/s41569-021-00549-w
- Adcock DM, Koftan C, Crisan D, Kiechle FL. Effect of polymorphisms in the cytochrome P450 CYP2C9 gene on warfarin anticoagulation. Arch Pathol Lab Med. 2004;128(12):1360–1363. doi: 10.5858/2004-128-1360-EOPITC
- Jia L, Wang Z, Men J, et al. Polymorphisms of VKORC1 and CYP2C9 are associated with warfarin sensitivity in Chinese population. Ther Clin Risk Manag. 2017;13:421–425. doi: 10.2147/TCRM.S130198
- Daly AK, Rettie AE, Fowler DM, Miners JO. Pharmacogenomics of CYP2C9: Functional and Clinical Considerations. J Pers Med. 2017;8(1):1. doi: 10.3390/jpm8010001
- Fihn SD, Callahan CM, Martin DC, et al. The risk for and severity of bleeding complications in elderly patients treated with warfarin. The National Consortium of Anticoagulation Clinics. Ann Intern Med. 1996;124(11):970–979. doi: 10.7326/0003-4819-124-11-199606010-00004
- Moyer TP, O'Kane DJ, Baudhuin LM, et al. Warfarin sensitivity genotyping: a review of the literature and summary of patient experience. Mayo Clin Proc. 2009;84(12):1079–1094. doi: 10.4065/mcp.2009.0278
- Perini JA, Struchiner CJ, Silva-Assunção E, et al. Pharmacogenetics of warfarin: development of a dosing algorithm for brazilian patients. Clin Pharmacol Ther. 2008;84(6):722–728. doi: 10.1038/clpt.2008.166
- Asiimwe IG, Zhang EJ, Osanlou R, et al. Warfarin dosing algorithms: A systematic review. Br J Clin Pharmacol. 2021;87(4):1717–1729. doi: 10.1111/bcp.14608
- Limdi NA, Wadelius M, Cavallari L, et al. Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood. 2010;115(18):3827–3834. doi: 10.1182/blood-2009-12-255992
- Sridharan K, Al Banna R, Malalla Z, et al. Influence of CYP2C9, VKORC1, and CYP4F2 polymorphisms on the pharmacodynamic parameters of warfarin: a cross-sectional study. Pharmacol Rep. 2021;73(5):1405–1417. doi: 10.1007/s43440-021-00256-w
- Sambialova AYu, Bairova TA, Belyaeva EV, et al. Polymorphism of CYP2C9, CYP4F2, VKORC1 genes in the Buryat population. Russian Journal of Genetics. 2020;56(12):1427–34. doi: 10.31857/S0016675820120127
- Akdeniz CS, Cevik M, Canbolat IP, et al. The effects of CYP2C9 and VKORC1 gene polymorphisms on warfarin maintenance dose in Turkish cardiac patients. Future Cardiol. 2020;16(6):645–654. doi: 10.2217/fca-2020-0027
- Farzamikia N, Sakhinia E, Afrasiabirad A. pharmacogenetics-based warfarin dosing in patients with cardiac valve replacement: The effects of CYP2C9 and VKORC1 gene polymorphisms. Lab Med. 2017;49(1):25–34. doi: 10.1093/labmed/lmx072
- Caldwell MD, Berg RL, Zhang KQ, et al. Evaluation of genetic factors for warfarin dose prediction. Clin Med Res. 2007;5(1):8–16. doi: 10.3121/cmr.2007.724
- Shalia KK, Doshi SM, Parikh S, et al. Prevalence of VKORC1 and CYP2C9 gene polymorphisms in Indian population and its effect on warfarin response. J Assoc Physicians India. 2012;60:34–38.
- Li X, Li D, Wu JC, et al. Precision dosing of warfarin: open questions and strategies. Pharmacogenomics J. 2019;19(3):219–229. doi: 10.1038/s41397-019-0083-3
- Caldwell MD, Awad T, Johnson JA, et al. CYP4F2 genetic variant alters required warfarin dose. Blood. 2008;111(8):4106–4112. doi: 10.1182/blood-2007-11-122010
- Al-Eitan LN, Almasri AY, Alnaamneh AH, et al. Influence of CYP4F2, ApoE, and CYP2A6 gene polymorphisms on the variability of Warfarin dosage requirements and susceptibility to cardiovascular disease in Jordan. Int J Med Sci. 2021;18(3):826–834. doi: 10.7150/ijms.51546
- Jarrar Y, Alkhalili M, Alhawari H, et al. The frequency of cytochrome 4F2 rs2108622 genetic variant and its effects on the lipid profile and complications of type II diabetes among a sample of patients in Jordan: A pilot study. Prostaglandins Other Lipid Mediat. 2023;165:106715. doi: 10.1016/j.prostaglandins.2023.106715
- Nakamura K, Obayashi K, Araki T, et al. CYP4F2 gene polymorphism as a contributor to warfarin maintenance dose in Japanese subjects. J Clin Pharm Ther. 2012;37(4):481–485. doi: 10.1111/j.1365-2710.2011.01317.x
- Gage BF, Eby C, Johnson JA, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther. 2008;84(3):326–331. doi: 10.1038/clpt.2008.10
- Asiimwe IG, Zhang EJ, Osanlou R, et al. Genetic Factors Influencing Warfarin Dose in Black-African Patients: A Systematic Review and Meta-Analysis. Clin Pharmacol Ther. 2020;107(6):1420–1433. doi: 10.1002/cpt.1755
- Wang ZQ, Zhang R, Zhang PP, et al. Pharmacogenetics-based warfarin dosing algorithm decreases time to stable anticoagulation and the risk of major hemorrhage: an updated meta-analysis of randomized controlled trials. J Cardiovasc Pharmacol. 2015;65(4):364–370. doi: 10.1097/FJC.0000000000000204
- Dobrzanski S, Duncan SE, Harkiss A, Wardlaw A. Age and weight as determinants of warfarin requirements. J Clin Hosp Pharm. 1983;8(1):75–77. doi: 10.1111/j.1365-2710.1983.tb00899.x
- Redwood M, Taylor C, Bain BJ, Matthews JH. The association of age with dosage requirement for warfarin. Age Ageing. 1991;20(3):217–220. doi: 10.1093/ageing/20.3.217
- Gurwitz JH, Avorn J, Ross-Degnan D, et al. Aging and the anticoagulant response to warfarin therapy. Ann Intern Med. 1992;116(11):901–904. doi: 10.7326/0003-4819-116-11-901
- Shendre A, Parmar GM, Dillon C, et al. Influence of Age on Warfarin Dose, Anticoagulation Control, and Risk of Hemorrhage. Pharmacotherapy. 2018;38(6):588–596. doi: 10.1002/phar.2089
- Mueller JA, Patel T, Halawa A, et al. Warfarin dosing and body mass index. Ann Pharmacother. 2014;48(5):584–588. doi: 10.1177/1060028013517541
- Tellor KB, Nguyen SN, Bultas AC, et al. Evaluation of the impact of body mass index on warfarin requirements in hospitalized patients. Ther Adv Cardiovasc Dis. 2018;12(8):207–216. doi: 10.1177/1753944718781295
- Absher RK, Moore ME, Parker MH. Patient-specific factors predictive of warfarin dosage requirements. Ann Pharmacother. 2002;36(10):1512–1517. doi: 10.1345/aph.1C025
- Ageno W, Gallus AS, Wittkowsky A, et al. Oral anticoagulant therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e44S–e88S. doi: 10.1378/chest.11-2292
- Salem M, Eljilany I, El-Bardissy A, Elewa H. Genetic Polymorphism Effect on Warfarin-Rifampin Interaction: A Case Report and Review of Literature. Pharmgenomics Pers Med. 2021;14:149–156. doi: 10.2147/PGPM.S288918
- Wang M, Zeraatkar D, Obeda M, et al. Drug-drug interactions with warfarin: A systematic review and meta-analysis. Br J Clin Pharmacol. 2021;87(11):4051–4100. doi: 10.1111/bcp.14833
- Wong W, Wilson Norton J, Wittkowsky AK. Influence of warfarin regimen type on clinical and monitoring outcomes in stable patients in an anticoagulation management services. Pharmacotherapy. 1999;19(12):1385–1391. doi: 10.1592/phco.19.18.1385.30894
- Johnson JA, Caudle KE, Gong L, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for pharmacogenetics-guided warfarin dosing: 2017 Update. Clin Pharmacol Ther. 2017;102(3):397–404. doi: 10.1002/cpt.668
- Zhang JE, Jorgensen AL, Alfirevic A, et al. Effects of CYP4F2 genetic polymorphisms and haplotypes on clinical outcomes in patients initiated on warfarin therapy. Pharmacogenet Genomics. 2009;19(10):781–789. doi: 10.1097/FPC.0b013e3283311347
- Danese E, Raimondi S, Montagnana M, et al. Effect of CYP4F2, VKORC1, and CYP2C9 in influencing coumarin dose: A single-patient data meta-analysis in more than 15,000 individuals. Clin Pharmacol Ther. 2019;105(6):1477–1491. doi: 10.1002/cpt.1323
- Klein TE, Altman RB, Eriksson N, et al.; International Warfarin Pharmacogenetics Consortium. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009;360(8):753–764. doi: 10.1056/NEJMoa0809329
Supplementary files
