Expression levels of miR-146a and miR-155 and their association with Interleukin-6 in type 1 diabetes

Cover Page

Cite item

Full Text

Abstract

Background. Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease characterized by the immune-mediated destruction of pancreatic beta cells, leading to insulin deficiency. Inflammatory cytokines, particularly interleukin-6 (IL-6), play a central role in this pathological process by promoting pro-inflammatory immune responses. Recent evidence highlights the involvement of microRNAs, especially miR-146a and miR-155, in regulating immune cell activation and cytokine signaling pathways. Dysregulation of these microRNAs may disrupt immune homeostasis and contribute to the progression of T1DM. This study aimed to investigate the expression levels of miR-146a and miR-155 in patients with T1DM and to examine their association with serum IL-6 concentrations. Materials and methods. This case-control study included 150 participants, comprising 100 individuals diagnosed with T1DM and 50 healthy controls. Peripheral blood samples were collected to evaluate fasting blood glucose, glycated hemoglobin, and IL-6 levels using an enzyme-linked immunosorbent assay. Quantitative real-time polymerase chain reaction was used to assess the expression of miR-146a and miR-155, normalized to miR-16 as the internal control. Results. The results revealed significantly elevated levels of fasting blood glucose, glycated hemoglobin, and IL-6 in patients compared to controls (p < 0.0001). Additionally, miR-146a expression was increased by a 3.1-fold change, and miR-155 showed a 1.58-fold increase in patients with T1DM compared to healthy individuals. Conclusions. The significant overexpression of microRNAs miR-146a and miR-155, in parallel with elevated serum levels of the pro-inflammatory cytokine IL-6, highlights their crucial role in the immunopathogenesis of T1DM. These findings suggest that miR-146a and miR-155 may act as key regulators in modulating immune responses, contributing to the autoimmune destruction of pancreatic beta cells. Moreover, the combined assessment of these microRNAs and IL-6 may serve as valuable molecular biomarkers for early diagnosis, disease prognosis, and the development of novel immunomodulatory therapeutic strategies in T1DM management.

About the authors

Zahraa Abdullah Natiq

Institute of Genetic Engineering and Biotechnology for Postgraduate Studies, University of Baghdad

Author for correspondence.
Email: Zahraa.abd2300m@ige.uobaghdad.edu.iq

MSc of Genetic Engineering and Biotechnology

Iraq, Baghdad

M. I. Nader

Institute of Genetic Engineering and Biotechnology for Postgraduate Studies, University of Baghdad

Email: Zahraa.abd2300m@ige.uobaghdad.edu.iq

PhD

Iraq, Baghdad

References

  1. Addissouky T.A., Ali M.M.A., El Sayed I.E.T., Wang Y. Type 1 diabetes mellitus: retrospect and prospect. Bull. Natl. Res. Cent., 2024, vol. 48, no. 1: 42. doi: 10.1186/s42269-024-01197-z
  2. Akil A.A.-S., Yassin E., Al-Maraghi A., Aliyev E., Al-Malki K., Fakhro K.A. Diagnosis and treatment of type 1 diabetes at the dawn of the personalized medicine era. J. Transl. Med., 2021, vol. 19, no. 1: 137. doi: 10.1186/s12967-021-02778-6
  3. Andreásson S., Allebeck P., Romelsjö A. Alcohol and mortality among young men: longitudinal study of Swedish conscripts. BMJ, 1988, vol. 296, no. 6628, pp. 1021–1025. doi: 10.1136/bmj.296.6628.1021
  4. Assmann T.S., Duarte G.C.K., Brondani L.A., de Freitas P.H.O., Martins É.M., Canani L.H., Crispim D. Polymorphisms in genes encoding miR-155 and miR-146a are associated with protection to type 1 diabetes mellitus. Acta Diabetol., 2017, vol. 54, no. 5, pp. 433–441. doi: 10.1007/s00592-016-0961-y
  5. Barić L. [The value of phonocardiography in clinical practice]. Liječnički Vjesnik, 1966, vol. 88, no. 11, pp. 1315–1328.
  6. Chen Y.-L., Qiao Y.-C., Pan Y.-H., Xu Y., Huang Y.-C., Wang Y.-H., Geng L.-J., Zhao H.-L., Zhang X.-X. Correlation between serum interleukin-6 level and type 1 diabetes mellitus: A systematic review and meta-analysis. Cytokine, 2017, vol. 94, pp. 14–20. doi: 10.1016/j.cyto.2017.01.002
  7. Cho H., Ha S.E., Singh R., Kim D., Ro S. microRNAs in Type 1 Diabetes: Roles, Pathological Mechanisms, and Therapeutic Potential. Int. J. Mol. Sci., 2025, vol. 26, no. 7: 3301. doi: 10.3390/ijms26073301
  8. García-Díaz D.F., Pizarro C., Camacho-Guillén P., Codner E., Soto N., Pérez-Bravo F. Expression of miR-155, miR-146a, and miR-326 in T1D patients from Chile: relationship with autoimmunity and inflammatory markers. Arch. Endocrinol. Metab., 2018, vol. 62, no. 1, pp. 34–40. doi: 10.20945/2359-3997000000006
  9. Ghaffari M., Razi S., Zalpoor H., Nabi-Afjadi M., Mohebichamkhorami F., Zali H. Association of MicroRNA-146a with Type 1 and 2 Diabetes and their Related Complications. J. Diabetes Res., 2023, vol. 2023: 2587104. doi: 10.1155/2023/2587104
  10. Grebenciucova E., Van Haerents S. Interleukin 6: at the interface of human health and disease. Front. Immunol., 2023, vol. 14: 1255533. doi: 10.3389/fimmu.2023.1255533
  11. Hammed I.K., Rashid N.F., Abed B.A. Serum Interleukin-6 level in children with type 1 diabetes mellitus. J. Fac. Med. Baghdad, 2012, vol. 54, no. 3, pp. 228–230. doi: 10.32007/jfacmedbagdad.543723
  12. Hundhausen C., Roth A., Whalen E., Chen J., Schneider A., Long S.A., Wei S., Rawlings R., Kinsman M., Evanko S.P., Wight T.N., Greenbaum C.J., Cerosaletti K., Buckner J.H. Enhanced T cell responses to IL-6 in type 1 diabetes are associated with early clinical disease and increased IL-6 receptor expression. Sci. Transl. Med., 2016, vol. 8, no. 356: 356ra139. doi: 10.1126/scitranslmed.aad9943
  13. Husham S., Taha G. Changes in levels of Interleukin-6 (IL-6) and Interleukin-8 (IL-8) in the Serum of Preterm Delivery Pregnant Women Affected by Gingivitis. J. Fac. Med. Baghdad, 2023, vol. 65, no. 4. doi: 10.32007/jfacmedbagdad.2152
  14. Ichev K. Structural design of the terminal vascular network in the thyroid gland of dog under various functional conditions. Nauchni Trudove Na Visshiia Meditsinski Institut, Sofiia, 1968, vol. 47, no. 3, pp. 17–21.
  15. Kamali K., Korjan E.S., Eftekhar E., Malekzadeh K., Soufi F.G. The role of miR-146a on NF-κB expression level in human umbilical vein endothelial cells under hyperglycemic condition. Bratisl. Med. J., 2016, vol. 117, no. 7, pp. 376–380. doi: 10.4149/BLL_2016_074
  16. Kröger C.J., Clark M., Ke Q., Tisch R.M. Therapies to Suppress β Cell Autoimmunity in Type 1 Diabetes. Front. Immunol., 2018, vol. 9: 1891. doi: 10.3389/fimmu.2018.01891
  17. Liu G.-J., Zhang Q.-R., Gao X., Wang H., Tao T., Gao Y.-Y., Zhou Y., Chen X.-X., Li W., Hang C.-H. MiR-146a Ameliorates Hemoglobin-Induced Microglial Inflammatory Response via TLR4/IRAK1/TRAF6 Associated Pathways. Front. Neurosci., 2020, vol. 14: 311. doi: 10.3389/fnins.2020.00311
  18. Maratni N.P.T., Saraswati M.R., Ayu Dewi N.N., Suastika K. MIRNA146a And Diabetes-Related Complications: A Review. Curr. Diabetes Rev., 2023, vol. 19, no. 9. doi: 10.2174/1573399819666221014095715
  19. Mohamed R.A., Mahmoud M., Morgan D.S., Gamal G.M., Doudar N. Type 1 diabetes mellitus and its genetic association with miR-146a and miR-155 single nucleotide polymorphisms (SNPs). Gene Rep., 2022, vol. 26: 101477. doi: 10.1016/j.genrep.2021.101477
  20. Mostahfezian M., Azhir Z., Dehghanian F., Hojati Z. Expression Pattern of microRNAs, miR-21, miR-155 and miR-338 in Patients with Type 1 Diabetes. Arch. Med. Res., 2019, vol. 50, no. 3, pp. 79–85. doi: 10.1016/j.arcmed.2019.07.002
  21. Piganelli J.D., Mamula M.J., James E.A. The Role of β Cell Stress and Neo-Epitopes in the Immunopathology of Type 1 Diabetes. Front. Endocrinol., 2021, vol. 11: 624590. doi: 10.3389/fendo.2020.624590
  22. Polina E.R., Oliveira F.M., Sbruzzi R.C., Crispim D., Canani L.H., Santos K.G. Gene polymorphism and plasma levels of miR-155 in diabetic retinopathy. Endocr. Connect., 2019, vol. 8, no. 12, pp. 1591–1599. doi: 10.1530/EC-19-0446
  23. Pupke H. Evaluation of curves of dosage effects in thick layers. Arch. Geschwulstforsch., 1963, vol. 22, no. 1, pp. 188–192.
  24. Raschke V.N., Heiderstädt R. Long-term results following retroauricular full-thickness skin grafts for vestibular reconstruction. Zahnarztl. Mitt., Zentralbl., 1988, vol. 76, no. 1, pp. 43–46.
  25. Roep B.O., Thomaidou S., van Tienhoven R., Zaldumbide A. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat. Rev. Endocrinol., 2021, vol. 17, no. 3, pp. 150–161. doi: 10.1038/s41574-020-00443-4
  26. Soucek D.J., Cherry D.S., Trent G.C. Relative acute toxicity of acid mine drainage water column and sediments to Daphnia magna in the Puckett’s Creek Watershed, Virginia, USA. Arch. Environ. Contam. Toxicol., 2000, vol. 38, no. 3, pp. 305–310. doi: 10.1007/s002449910040
  27. Taha G.I. Involvement of IL-10 gene polymorphism (rs1800896) and IL-10 level in the development of periimplantitis. Minerva Dent. Oral Sci., 2024, vol. 73, no. 5, pp. 264–271. doi: 10.23736/S2724-6329.23.04844-1
  28. Talib E.Q., Taha G.I. Involvement of interlukin-17A (IL-17A) gene polymorphism and interlukin-23 (IL-23) level in the development of peri-implantitis. BDJ Open, 2024, vol. 10, no. 1: 12. doi: 10.1038/s41405-024-00193-9
  29. Tanaka T., Narazaki M., Kishimoto T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol., 2014, vol. 6, no. 10: a016295. doi: 10.1101/cshperspect.a016295
  30. Uchiyama T. Studies on hyperthermic chemotherapy for cancer of the esophagus — especially the intraluminal administration with perfusion of BLM containing warmed saline solution. Nihon Geka Hokan. Arch. Jpn. Chir., 1984, vol. 53, no. 6, pp. 703–720.
  31. Walla P., Endl W., Lindinger G., Deecke, Lang W. Implicit memory within a word recognition task: an event-related potential study in human subjects. Neurosci. Lett., 1999, vol. 269, no. 3, pp. 129–132. doi: 10.1016/s0304-3940(99)00430-9
  32. Yang M., Ye L., Wang B., Gao J., Liu R., Hong J., Wang W., Gu W., Ning G. Decreased miR-146 expression in peripheral blood mononuclear cells is correlated with ongoing islet autoimmunity in type 1 diabetes patients. J. Diabetes, 2015, vol. 7, no. 2, pp. 158–165. doi: 10.1111/1753-0407.12163
  33. Yu H., Lin L., Zhang Z., Zhang H., Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct. Target. Ther., 2020, vol. 5, no. 1: 209. doi: 10.1038/s41392-020-00312-6
  34. Zarei M., Sheikholeslami M.A., Mozaffari M., Mortada Y. Innovative immunotherapies and emerging treatments in type 1 diabetes management. Diabetes Epidemiol. Manag., 2025, vol. 17: 100247. doi: 10.1016/j.deman.2024.100247

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Natiq Z.A., Nader M.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).