Preparation and characterization of the recombinant norovirus VP1 surface protein S domain
- Authors: Lapin V.A.1, Novikov D.V.1, Mokhonova E.V.1, Melentyev D.A.1, Tsyganova M.I.1, Manakova E.A.2, Novikov V.V.1
-
Affiliations:
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
- LLC “TIAS LOTUS”
- Issue: Vol 15, No 6 (2025)
- Pages: 1049-1057
- Section: ORIGINAL ARTICLES
- URL: https://ogarev-online.ru/2220-7619/article/view/380240
- DOI: https://doi.org/10.15789/2220-7619-PAC-17930
- ID: 380240
Cite item
Full Text
Abstract
Introduction. In the structure of the norovirus surface VP1, it consists of the S domain which N-terminal sequence is responsible for capsid formation, and P domain that extends beyond the capsid. Possibility of using S domain for preparing chimeric virus-like particles is shown. The aim of the work is to obtain a recombinant VP1 protein S domain and to characterize its immunogenic and antigenic properties. Materials and methods. Cloning of the sequence encoding VP1 protein S domain, modeling the structure of proteins, microbiological methods for working with E. coli cells producing recombinant proteins, polymerase chain reaction, electrophoresis of nucleic acids in an agarose gel and proteins in a polyacrylamide gel, affinity chromatography, enzyme immunoassay, electron microscopy were applied during the study. Results. A genetic construct encoding the recombinant VP1 norovirus genotype GII.4 protein S domain optimized for highly efficient expression in E. coli is obtained. E. coli Rosetta 2 cells were transformed with the genetic construct. Conditions for protein production and purification were optimized. A soluble recombinant protein reproducing norovirus VP1 protein S domain and forming virus-like particles with a diameter of 30 nm is obtained. Immunization of mice with the obtained protein caused specific antibody production including low-avidity IgM antibodies. When assessing antigenic properties, it was shown that antibodies interacting with the recombinant S domain are found in the blood samples collected from volunteers. Antibody titers, but of lower avidity, specific to the latter corresponded to those against full-length VP1. Likely, it was due to the localization of the S domain inside the viral particle. Conclusion. Antigenic and immunogenic properties of recombinant protein reproducing structure of norovirus VP1 S domain are characterized, and its ability to form virus-like particles is shown.
Keywords
About the authors
Vladislav A. Lapin
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Author for correspondence.
Email: fridens.95@yandex.ru
Junior Researcher, Laboratory of Immunochemistry
Russian Federation, Nizhniy NovgorodD. V. Novikov
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: fridens.95@yandex.ru
PhD (Biology), Leading Researcher, Laboratory of Immunochemistry
Russian Federation, Nizhniy NovgorodE. V. Mokhonova
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: fridens.95@yandex.ru
Researcher, Laboratory of Immunochemistry
Russian Federation, Nizhniy NovgorodD. A. Melentyev
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: fridens.95@yandex.ru
Junior Researcher, Laboratory of Immunochemistry
Russian Federation, Nizhniy NovgorodM. I. Tsyganova
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: fridens.95@yandex.ru
PhD (Biology), Leading Researcher, Laboratory of Immunochemistry
Russian Federation, Nizhniy NovgorodE. A. Manakova
LLC “TIAS LOTUS”
Email: fridens.95@yandex.ru
PhD (Medicine), Director of Medicine
Russian Federation, Nizhniy NovgorodV. V. Novikov
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: fridens.95@yandex.ru
DSc (Biology), Professor, Head of the Laboratory of Immunochemistry
Russian Federation, Nizhniy NovgorodReferences
- Быков Р.О., Скрябина С.В., Килячина А.С., Итани Т.М., Чалапа В.И., Старикова П.К., Колтунов С.В., Пономарева А.В., Семенов А.В. Молекулярно-генетическая характеристика и филогенетический анализ возбудителей норовирусной инфекции человека отдельных муниципалитетов в Свердловской области за 2022 год // Журнал микробиологии, эпидемиологии и иммунобиологии. 2023. Т. 100, № 4. С. 306–313. [Bykov R.O., Scriabina S.V., Kilyachina A.S., Itani T.M., Chalapa V.I., Starikova P.K., Koltunov S.V., Ponomareva A.V., Semenov A.V. Genetic characterization and phylogenetic analysis of human norovirus infection in individual municipalities of the Sverdlovsk region in 2022. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2023, vol. 100, no. 4, pp. 306–313. (In Russ.)] doi: 10.36233/0372-9311-402]
- Лапин В.А., Новиков Д.В., Мохонова Е.В., Мелентьев Д.А., Цыганова М.И., Зайцев Д.Е., Новиков В.В. Получение рекомбинантного белка VP1 норовируса и его антигенные и иммуногенные свойства // Журнал микробиологии, эпидемиологии и иммунобиологии. 2024. Т. 101, № 5. С. 661–667. [Lapin V.A., Novikov D.V., Mokhonova E.V., Melentyev D.A., Tsiganova M.I., Zaitsev D.E., Novikov V.V. Production of recombinant norovirus VP1 protein and its antigenic and immunogenic properties. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2024, vol. 101, no. 5, pp. 661–667. (In Russ.)] doi: 10.36233/0372-9311-552
- Новиков Д.В., Мелентьев Д.А., Мохонов В.В., Кашников А.Ю., Новикова Н.А., Лапин В.А., Мохонова Е.В., Новиков В.В. Получение вирусоподобных частиц норовируса, содержащих VP1 эховируса 30 // Вопросы вирусологии. 2021. Т. 66, № 5. С. 383–389. [Novikov D.V., Melentev D.A., Mokhonov V.V., Kashnikov A.Y., Novikova N.A., Lapin V.A., Mokhonova E.V., Novikov V.V. Construction of norovirus (Caliciviridae: Norovirus) virus-like particles containing VP1 of the Echovirus 30 (Piconaviridae: Enterovirus: Enterovirus B). Voprosy virusologii = Problems of Virology, 2021, vol. 66, no. 5, pp. 383–389. (In Russ.)] doi: 10.36233/0507-4088-79
- Талаев В.Ю., Новиков Д.В., Заиченко И.Е., Светлова М.В., Воронина Е.В., Бабайкина О.Н., Лапин В.А., Мелентьев Д.А., Новикова Н.А., Кашников А.Ю., Новиков В.В. Химерные вирусоподобные частицы, содержащие фрагмент белка шипа коронавируса, стимулируют созревание дендритных клеток человека // Инфекция и иммунитет. 2024. Т. 14, № 2. C. 227–237. [Talayev V.Yu., Novikov D.V., Zaichenko I.Ye., Svetlova M.V., Voronina E.V., Babaykina O.N., Lapin V.A., Melentiev D.A., Novikova N.A., Kashnikov A.Yu., Novikov V.V. Coronavirus spike protein fragment-containing chimeric viruslike particles stimulate human dendritic cell maturation. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2024, vol. 14, no. 2, pp. 227–237. (In Russ.)] doi: 10.15789/2220-7619-CSP-17612
- Beek J. van, de Graaf M., Al-Hello H., Allen D.J., Ambert-Balay K., Botteldoorn N., Brytting M., Buesa J., Cabrerizo M., Chan M., Cloak F., Di Bartolo I., Guix S., Hewitt J., Iritani N., Jin M., Johne R., Lederer I., Mans J., Martella V., Maunula L., McAllister G., Niendorf S., Niesters H.G., Podkolzin A.T., Poljsak-Prijatelj M., Rasmussen L.D., Reuter G., Tuite G., Kroneman A., Vennema H., Koopmans M.P.G. Molecular surveillance of norovirus, 2005-16: an epidemiological analysis of data collected from the NoroNet network. Lancet Infect. Dis., 2018, vol. 18, no. 5, pp. 545–553. doi: 10.1016/S1473-3099(18)30059-8
- Bertolotti-Ciarlet A., White L.J., Chen R., Prasad B.V.V., Estes M.K. Structural requirements for the assembly of Norwalk virus-like particles. J. Virol., 2002, vol. 76, no. 8, pp. 4044–4055. doi: 10.1128/jvi.76.8.4044-4055.2002
- Black R.E., Perin J., Yeung D., Tomaskovic L., Stein C., Lanata C., Scherpbier R., Sazawal S., Child Health Epidemiology Reference Group (CHERG). Estimated global and regional causes of deaths from diarrhea in children younger than 5 years during 2000-21: a systematic review and Bayesian multinomial analysis. Lancet Glob. Health, 2024, vol. 12, no. 6, pp. 919–928. doi: 10.1016/S2214-109X(24)00078-02
- Fang H., Tan M., Xia M., Huang P., Wei C., Jiang X. Norovirus P particle efficiently elicits innate, humoral and cellular immunity. PLoS One, 2013, vol. 8, no. 4: e63269. doi: 10.1371/journal.pone.0063269
- Ford-Siltz L.A., Tohma K., Parra G.I. Understanding the relationship between norovirus diversity and immunity. Gut Microbes, 2021, vol. 13, no. 1, pp. 1–13. doi: 10.1080/19490976.2021.1900994
- Gulati U., Kumari K., Wu W., Keitel W.A., Air G.M. Amount and avidity of serum antibodies against native glycoproteins and denatured virus after repeated influenza whole-virus vaccination. Vaccine, 2005, vol. 23, no. 11, pp. 1414–1425. doi: 10.1016/j.vaccine.2004.08.053
- Hasso-Agopsowicz M., Hwang A., Hollm-Delgado M.-G., McArthur R.J., Vandelaer J., Afolabi B., Bixby H., Burton A., Dal Poz M.R., Delannoy M., Doligalski A., Diop O.M., Donohue P., Fay J., Gessner B.D., Gitter S., Gyawali K., Harcourt J., Hecht L., Heron L., Hines J.Z., Ionin B., Kieny M.P., Kiure K.T., Klindworth S., Larson M., Leffler K.M., Lewis-Ximeniz L.L., Marano N., Marques A.D.A., Martin C., Massey P., Mihai C., Misra M., Mukherjee S., Murphy L., Murray E.A., Mutua H., Musanhu E., Mwangi W.M., Nagel M.A., Navarro J., Newman R.D., Nyakarahuka L., Okonkwo U.C., Pearson P., Pépin J., Plachouras D., Popovic T., Pyle D., Raul K., Reeder B., Robertson S., Röbbelen R.E., Rose B.S., Rubinstein F., Schiffman J., Schreck C., Seekatz B., Shukarev G., Simon V., Songane C., Soni S.S., Spears E., Springer A., Stacke J., Stegmuller B., Stephens M., Tai Z., Tanner A., Tapia E., Tejada-Strop A., Teufel L., Thiebaud A., Trimboli G., Tylor E., Usher L., Valderrama Vázquez B., van Rensburg J.C., Watkins S., Windau J., Wolter F., Woyessa A., Yip H., Zilber S., Zimmerman R. Identifying WHO global priority endemic pathogens for vaccine research and development (R&D) using multi-criteria decision analysis (MCDA): an objective of the Immunization Agenda 2030. EBioMedicine, 2024, vol. 110: 105424. doi: 10.1016/j.ebiom.2024.105424
- Jeon K., Lee S.K., Jeong S., Lim H.N., Oh H., Shin B.M. Trends in the detection of viruses causing gastroenteritis over a 10-year period and impact of nonharmaceutical interventions. J. Clin. Virol., 2024, vol. 172: 105676. doi: 10.1016/j.jcv.2024.105676
- Kanno A., Kazuyama Y. Immunoglobulin G antibody avidity assay for serodiagnosis of hepatitis C virus infection. J. Med. Virol., 2002, vol. 68, no. 2, pp. 229–233. doi: 10.1002/jmv.10186
- Li X., Zhou R., Tian X., Li H., Zhou Z. Characterization of a cross-reactive monoclonal antibody against Norovirus genogroups I, II, III and V. Virus Res., 2010, vol. 151, no. 2, pp. 142–147. doi: 10.1016/j.virusres.2010.04.005
- Ludwig-Begall L.F., Mauroy A., Thiry E. Noroviruses — the state of the art, nearly fifty years after their initial discovery. Viruses, 2021, vol. 13, no. 8: 1541. doi: 10.3390/v13081541
- Parra G.I., Azure J., Fischer R., Bok K., Sandoval-Jaime C., Sosnovtsev S.V., Green K.Y. Identification of a broadly cross-reactive epitope in the inner shell of the norovirus capsid. PLoS One, 2013, vol. 8, no. 6: e67592. doi: 10.1371/journal.pone.0067592
- Prasad B.V.V., Hardy M.E., Dokland T., Bella J., Rossmann M.G., Estes M.K. X-ray crystallographic structure of the Norwalk virus capsid. Science, 1999, vol. 286, no. 5438, pp. 287–290. doi: 10.1126/science.286.5438.287
- Smith H.Q., Smith T.J. The dynamic capsid structures of the noroviruses. Viruses, 2019, vol. 11, no. 3: 235. doi: 10.3390/v11030235
- Xia M., Huang P., Sun C., Wang L., Zhou Q., Jiang X. Bioengineered norovirus S(60) nanoparticles as a multifunctional vaccine platform. ACS Nano, 2018, vol. 12, no. 11, pp. 10665–10682. doi: 10.1021/acsnano.8b02776
- Yoda T., Suzuki Y., Terano Y., Yamazaki K., Sakon N., Kuzuguchi T., Oda H., Tsukamoto T. Precise characterization of norovirus (Norwalk-like virus)-specific monoclonal antibodies with broad reactivity. J. Clin. Microbiol., 2003, vol. 41, no. 6, pp. 2367–2371. doi: 10.1128/JCM.41.6.2367-2371.2003
- Zharova A.-M.D., Talayev V.Y., Perenkov A.D., Zarembo I.I., Molodkina O.M., Makhova S.V., Vorontsova E.V., Novikov V.V. In silico analysis of the antigenic properties of norovirus GII.4 Sydney [P16] VP1 protein. Opera Med. Physiol., 2023, vol. 10, no. 3, pp. 140–151. doi: 10.24412/2500-2295-2023-3-140-151
Supplementary files

