The use of probiotics as current adjuvant therapy for SARS-CoV-2 infection in gastrointestinal disease
- Authors: Budiyono D.1, Intan A.M.1, Nurhasan P.A.1
-
Affiliations:
- Sebelas Maret University
- Issue: Vol 15, No 5 (2025)
- Pages: 944-954
- Section: ORIGINAL ARTICLES
- URL: https://ogarev-online.ru/2220-7619/article/view/380214
- DOI: https://doi.org/10.15789/2220-7619-TUO-17876
- ID: 380214
Cite item
Full Text
Abstract
Introduction. SARS-CoV-2 is a virus that causes COVID-19 which is currently a pandemic situation. The symptoms of COVID-19 can vary from asymptomatic to acute respiratory distress syndrome. Some patients may also have gastrointestinal manifestations such as diarrhea, vomiting, and abdominal pain. Recently, it is known that some COVID-19 patients also showed microbial dysbiosis with decreased Lactobacillus and Bifidobacterium. With the increasing number of reported cases and gastrointestinal symptoms in COVID-19 patients, we are trying to summarize the possibility of using probiotics as the current adjuvant therapy for gastrointestinal disease due to SARS-CoV-2 infection. Materials and methods. We did a comprehensive literature search on PubMed, Science Direct, Google Scholar and screened bibliographies of other articles. The search yielded 2836 articles and 55 of them met eligibility criteria for this systematic review. Results and discussion. Probiotics can affect the gastrointestinal tract through some mechanism including: 1) competitive exclusion of pathogens and production of antimicrobial substances, 2) enzymatic activities and production of volatile fatty acid, 3) cell adhesion and mucin production, 4) enhancement of epithelial barrier, 5) modulation of the immune system. In recent data, probiotics are used in some COVID-19 patients with gastrointestinal disease. It is also considered to help overcome cytokine storms by suppressing proinflammatory cytokines and enhance the patient’s immunity by modulating the immune system. Conclusion. Probiotics can be used as the current adjuvant therapy to eliminate gastrointestinal disease in SARS-CoV-2 infection and prevent further complications of COVID-19. However, further clinical research still needed to determine the effectiveness of probiotics in COVID-19 patients.
Keywords
About the authors
Denny Budiyono
Sebelas Maret University
Author for correspondence.
Email: denny.budiyono@yahoo.co.id
General Practitioner, Faculty of Medicine
Indonesia, SurakartaA. M. Intan
Sebelas Maret University
Email: intanardyla1608@gmail.com
Sp.PD., M. Kes, Dr. Moewardi Hospital, Faculty of Medicine
Indonesia, SurakartaP. A. Nurhasan
Sebelas Maret University
Email: dr.nurhasan21@staff.uns.ac.id
Sp.PD., M. Kes, Dr. Moewardi Hospital, Faculty of Medicine
Indonesia, SurakartaReferences
- Bahreini-Esfahani N., Moravejolahkami A.R. Can Synbiotic Dietary Pattern Predict Lactobacillales Strains in Breast Milk? Breastfeed. Med., 2020, vol. 15, no. 6, pp. 387–393. doi: 10.1089/bfm.2019.0301
- Baud D., Dimopoulou Agri V., Gibson G.R., Reid G., Giannoni E. Using Probiotics to Flatten the Curve of Coronavirus Disease COVID-2019 Pandemic. Front. Public Health, 2020, vol. 8: 186. doi: 10.3389/fpubh.2020.00186
- Bermudez-Brito M., Plaza-Díaz J., Muñoz-Quezada S., Gómez-Llorente C., Gil A. Probiotic mechanisms of action. Ann. Nutr. Metab., 2012, vol. 61, no. 2, pp. 160–174. doi: 10.1159/000342079
- Bradley C.P., Teng F., Felix K.M., Sano T., Naskar D., Block K.E., Huang H., Knox K.S., Littman D.R., Wu H.J. Segmented Filamentous Bacteria Provoke Lung Autoimmunity by Inducing Gut–lung Axis Th17 Cells Expressing Dual TCRs. Cell Host Microbe, 2017, vol. 22, no. 5, pp. 697–704.e4: doi: 10.1016/j.chom.2017.10.007
- Budden K.F., Gellatly S.L., Wood D.L.A., Cooper M.A., Morrison M., Hugenholtz P., Hansbro P.M. Emerging pathogenic links between microbiota and the gut–lung axis. Nat. Rev. Microbiol., 2017, vol. 15, no. 1, pp. 55–63. doi: 10.1038/nrmicro.2016.142
- Canfora E.E., Jocken J.W.E., Blaak E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol., 2015, vol. 11, no. 10, pp. 577–591. doi: 10.1038/nrendo.2015.128
- Chan J.F.W., Yuan S., Kok K.H., To K.K.W., Chu H., Yang J., Xing F., Liu J., Yip C.C.Y., Poon R.W.S., Tsoi H.W., Lo S.K.F., Chan K.H., Poon V.K.M., Chan W.M., Ip J.D., Cai J.P., Cheng V.C.C., Chen H., Hui C.K.M., Yuen K.Y. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 2020, vol. 395, no. 10223, pp. 514–523. doi: 10.1016/S0140-6736(20)30154-9
- Channappanavar R., Fehr A.R., Vijay R., Mack M., Zhao J., Meyerholz D.K., Perlman S. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe, 2016, vol. 19, no. 2, pp. 181–193. doi: 10.1016/j.chom.2016.01.007
- Channappanavar R., Zhao J., Perlman S. T cell-mediated immune response to respiratory coronaviruses. Immunol. Res., 2014, vol. 59, no. 1–3, pp. 118–128. doi: 10.1007/s12026-014-8534-z
- Chousterman B.G., Swirski F.K., Weber G.F. Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol., 2017, vol. 39, no. 5, pp. 517–528. doi: 10.1007/s00281-017-0639-8
- Dang A.T., Marsland B.J. Microbes, metabolites, and the gut–lung axis. Mucosal Immunol., 2019, vol. 12, no. 4, pp. 843–850. doi: 10.1038/s41385-019-0160-6
- Dhar D., Mohanty A. Gut microbiota and Covid-19 — possible link and implications. Virus Res., 2020, vol. 285: 198018. doi: 10.1016/j.virusres.2020.198018
- Enaud R., Prevel R., Ciarlo E., Beaufils F., Wieërs G., Guery B., Delhaes L. The Gut–lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. Front. Cell Infect. Microbiol., 2020, vol. 10: 9. doi: 10.3389/fcimb.2020.00009
- Giorgetti G., Brandimarte G., Fabiocchi F., Ricci S., Flamini P., Sandri G., Trotta M.C., Elisei W., Penna A., Lecca P.G., Picchio M., Tursi A. Interactions between Innate Immunity, Microbiota, and Probiotics. J. Immunol. Res., 2015, 2015: 501361. doi: 10.1155/2015/501361
- Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X., Liu L., Shan H., Lei C.L., Hui D.S.C., Du B., Li L.J., Zeng G., Yuen K.Y., Chen R.C., Tang C.L., Wang T., Chen P.Y., Xiang J., Li S.Y., Wang J.L., Liang Z.J., Peng Y.X., Wei L., Liu Y., Hu Y.H., Peng P., Wang J.M., Liu J.Y., Chen Z., Li G., Zheng Z.J., Qiu S.Q., Luo J., Ye C.J., Zhu S.Y., Zhong N.S.; China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med., 2020, vol. 382, no. 18, pp. 1708–1720. doi: 10.1056/NEJMoa2002032
- Hasannejad-Bibalan M., Hekmatnezhad H. A light shining through darkness: probiotic against COVID-19. J Curr Biomed Rep, 2020, vol. 1, no. 1, pp. 1–2. doi: 10.52547/jcbior.1.1.1
- Hasan N., Yang H. Factors affecting the composition of the gut microbiota, and its modulation. Peer J., 2019, vol. 7: e7502. doi: 10.7717/peerj.7502
- Hassan S.A., Sheikh F.N., Jamal S., Ezeh J.K., Akhtar A. Coronavirus (COVID-19): A Review of Clinical Features, Diagnosis, and Treatment. Cureus, 2020, vol. 12, no. 3: e7355. doi: 10.7759/cureus.7355
- He Y., Wen Q., Yao F., Xu D., Huang Y., Wang J. Gut–lung axis: The microbial contributions and clinical implications. Crit. Rev. Microbiol., 2017, vol. 43, no. 1, pp. 81–95. doi: 10.1080/1040841X.2016.1176988
- Högner K., Wolff T., Pleschka S., Plog S., Gruber A.D., Kalinke U., Walmrath H.D., Bodner J., Gattenlöhner S., Lewe-Schlosser P., Matrosovich M., Seeger W., Lohmeyer J., Herold S. Macrophage-expressed IFN-β contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia. PLoS Pathog., 2013, vol. 9, no. 2: e1003188. doi: 10.1371/journal.ppat.1003188
- Horowitz R.I., Freeman P.R., Bruzzese J. Efficacy of glutathione therapy in relieving dyspnea associated with COVID-19 pneumonia: A report of 2 cases. Respir. Med. Case Rep., 2020, vol. 30: 101063. doi: 10.1016/j.rmcr.2020.101063
- Hur K.Y., Lee M.S. Gut Microbiota and Metabolic Disorders. Diabetes Metab. J., 2015, vol. 39, no. 3, pp. 198–203. doi: 10.4093/dmj.2015.39.3.198
- Holshue M.L., DeBolt C., Lindquist S., Lofy K.H., Wiesman J., Bruce H., Spitters C., Ericson K., Wilkerson S., Tural A., Diaz G., Cohn A., Fox L., Patel A., Gerber S.I., Kim L., Tong S., Lu X., Lindstrom S., Pallansch M.A., Weldon W.C., Biggs H.M., Uyeki T.M., Pillai S.K.; Washington State 2019-nCoV Case Investigation Team. First Case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med., 2020, vol. 382, no. 10, pp. 929–936. doi: 10.1056/NEJMoa2001191
- Jiang X., Tao J., Wu H., Wang Y., Zhao W., Zhou M., Huang J., You Q., Meng H., Zhu F., Zhang X., Qian M., Qiu Y. Clinical features and management of severe COVID-19: A retrospective study in Wuxi, Jiangsu Province, China. medRxiv, vol. 2020: 2020.04.10.20060335: doi: 10.1101/2020.04.10.20060335
- Liang W., Feng Z., Rao S., Xiao C., Xue X., Lin Z., Zhang Q., Qi W. Diarrhoea may be underestimated: a missing link in 2019 novel coronavirus. Gut, 2020, vol. 69, no. 6, pp. 1141–1143. doi: 10.1136/gutjnl-2020-320832
- Marsland B.J., Trompette A., Gollwitzer E.S. The Gut–lung Axis in Respiratory Disease. Ann. Am. Thorac. Soc., 2015, vol. 12, Suppl. 2, pp. S150-S156. doi: 10.1513/AnnalsATS.201503-133AW
- McAleer J.P., Kolls J.K. Contributions of the intestinal microbiome in lung immunity. Eur. J. Immunol., 2018, vol. 48, no. 1, pp. 39–49. doi: 10.1002/eji.201646721
- McAleer J.P., Nguyen N.L., Chen K., Kumar P., Ricks D.M., Binnie M., Armentrout R.A., Pociask D.A., Hein A., Yu A., Vikram A., Bibby K., Umesaki Y., Rivera A., Sheppard D., Ouyang W., Hooper L.V., Kolls J.K. Pulmonary Th17 Antifungal Immunity Is Regulated by the Gut Microbiome. J. Immunol., 2016, vol. 197, no. 1, pp. 97–107. doi: 10.4049/jimmunol.1502566
- McFarland L.V. Use of probiotics to correct dysbiosis of normal microbiota following disease or disruptive events: a systematic review. BMJ Open, 2014, vol. 4, no. 8: e005047. doi: 10.1136/bmjopen-2014-005047
- Mousa H.A. Prevention and Treatment of Influenza, Influenza-Like Illness, and Common Cold by Herbal, Complementary, and Natural Therapies. J. Evid. Based Complement. Altern. Med., 2017, vol. 22, no. 1, pp. 166–174. doi: 10.1177/2156587216641831
- Musa S. Hepatic and gastrointestinal involvement in coronavirus disease 2019 (COVID-19): What do we know till now? Arab. J. Gastroenterol., 2020, vol. 21, no. 1, pp. 3–8. doi: 10.1016/j.ajg.2020.03.002
- Neurath M.F. COVID-19 and immunomodulation in IBD. Gut, 2020, vol. 69, no. 7, pp. 1335–1342. doi: 10.1136/gutjnl-2020-321269
- Pan L., Mu M., Yang P., Sun Y., Wang R., Yan J., Li P., Hu B., Wang J., Hu C., Jin Y., Niu X., Ping R., Du Y., Li T., Xu G., Hu Q., Tu L. Clinical Characteristics of COVID-19 Patients With Digestive Symptoms in Hubei, China: A Descriptive, Cross-Sectional, Multicenter Study. Am. J. Gastroenterol., 2020, vol. 115, no. 5, pp. 766–773. doi: 10.14309/ajg.0000000000000620
- Plaza-Díaz J., Ruiz-Ojeda F.J., Gil-Campos M., Gil A. Immune-Mediated Mechanisms of Action of Probiotics and Synbiotics in Treating Pediatric Intestinal Diseases. Nutrients, 2018, vol. 10, no. 1: 42. doi: 10.3390/nu10010042
- Plaza-Diaz J., Ruiz-Ojeda F.J., Gil-Campos M., Gil A. Mechanisms of Action of Probiotics. Adv. Nutr., 2019, vol. 10, suppl. 1, pp. S49-S66. doi: 10.1093/advances/nmy063. Erratum in: Adv. Nutr., 2020, vol. 11, no. 4, pp. 1054. doi: 10.1093/advances/nmaa042
- Pourhossein M., Moravejolahkami A.R. Probiotics in viral infections, with a focus on COVID-19: A Systematic Review. Authorea, vol. 2020: 158938616.61042433: doi: 10.22541/au.158938616.61042433
- Qamar M.A. COVID-19: a look into the modern age pandemic. Z. Gesundh. Wiss., 2022, vol. 30, no. 1, pp. 249–252. doi: 10.1007/s10389-020-01294-z
- Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y., Xie C., Ma K., Shang K., Wang W., Tian D.S. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis., 2020, vol. 71, no. 15, pp. 762–768. doi: 10.1093/cid/ciaa248
- Song W., Li J., Zou N., Guan W., Pan J., Xu W. Clinical features of pediatric patients with coronavirus disease (COVID-19). J. Clin. Virol., 2020, vol. 127: 104377. doi: 10.1016/j.jcv.2020.104377
- Tan J.Y., Tang Y.C., Huang J. Gut Microbiota and Lung Injury. Adv. Exp. Med. Biol., 2020, vol. 1238, pp. 55–72. doi: 10.1007/978-981-15-2385-4_5
- Tian Y., Rong L., Nian W., He Y. Review article: gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment. Pharmacol. Ther., 2020, vol. 51, no. 9, pp. 843–851. doi: 10.1111/apt.15731
- Wang H., Gao K., Wen K., Allen I.C., Li G., Zhang W., Kocher J., Yang X., Giri-Rachman E., Li G.H., Clark-Deener S., Yuan L. Lactobacillus rhamnosus GG modulates innate signaling pathway and cytokine responses to rotavirus vaccine in intestinal mononuclear cells of gnotobiotic pigs transplanted with human gut microbiota. BMC Microbiol., 2016, vol. 16, no. 1: 109. doi: 10.1186/s12866-016-0727-2
- West C.E., Jenmalm M.C., Prescott S.L. The gut microbiota and its role in the development of allergic disease: a wider perspective. Clin. Exp. Allergy, 2015, vol. 45, no. 1, pp. 43–53. doi: 10.1111/cea.12332
- World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report – 51. 11 March 2020. WHO, 2020, vol. 51, pp. 1–10. URL: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10
- World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report – 146. 14 June 2020. WHO, 2020, vol. 146, pp. 1–15. URL: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200614-covid-19-sitrep-146.pdf?sfvrsn=5b89bdad_6
- Wong S.H., Lui R.N., Sung J.J. Covid-19 and the digestive system. J. Gastroenterol. Hepatol., 2020, vol. 35, no. 5, pp. 744–748. doi: 10.1111/jgh.15047
- Xiao F., Tang M., Zheng X., Liu Y., Li X., Shan H. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology, 2020, vol. 158, no. 6, pp. 1831–1833.e3: doi: 10.1053/j.gastro.2020.02.055
- Xu X.W., Wu X.X., Jiang X.G., Xu K.J., Ying L.J., Ma C.L., Li S.B., Wang H.Y., Zhang S., Gao H.N., Sheng J.F., Cai H.L., Qiu Y.Q., Li L.J. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ, 2020, vol. 368: m606. doi: 10.1136/bmj.m606
- Xu Y., Li X., Zhu B., Liang H., Fang C., Gong Y., Guo Q., Sun X., Zhao D., Shen J., Zhang H., Liu H., Xia H., Tang J., Zhang K., Gong S. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med., 2020, vol. 26, no. 4, pp. 502–505. doi: 10.1038/s41591-020-0817-4
- Yadav A.K., Tyagi A., Kumar A., Panwar S., Grover S., Saklani A.C., Hemalatha R., Batish V.K. Adhesion of Lactobacilli and their anti-infectivity potential. Crit. Rev. Food Sci. Nutr., 2017, vol. 57, no. 10, pp. 2042–2056. doi: 10.1080/10408398.2014.918533
- Young B.E., Ong S.W.X., Kalimuddin S., Low J.G., Tan S.Y., Loh J., Ng O.T., Marimuthu K., Ang L.W., Mak T.M., Lau S.K., Anderson D.E., Chan K.S., Tan T.Y., Ng T.Y., Cui L., Said Z., Kurupatham L., Chen M.I., Chan M., Vasoo S., Wang L.F., Tan B.H., Lin R.T.P., Lee V.J.M., Leo Y.S., Lye D.C.; Singapore 2019 Novel Coronavirus Outbreak Research Team. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA, 2020, vol. 323, no. 15, pp. 1488–1494. doi: 10.1001/jama.2020.3204
- Yuki K., Fujiogi M., Koutsogiannaki S. COVID-19 pathophysiology: A review. Clin. Immunol., 2020, vol. 215: 108427. doi: 10.1016/j.clim.2020.108427
- Zaim S., Chong J.H., Sankaranarayanan V., Harky A. COVID-19 and Multiorgan Response. Curr. Probl. Cardiol., 2020, vol. 45, no. 8: 100618. doi: 10.1016/j.cpcardiol.2020.100618
- Zhang D., Li S., Wang N., Tan H.Y., Zhang Z., Feng Y. The Cross-Talk Between Gut Microbiota and Lungs in Common Lung Diseases. Front. Microbiol., 2020, vol. 11: 301. doi: 10.3389/fmicb.2020.00301
- Zhang H., Kang Z., Gong H., Xu D., Wang J., Li Z., Li Z., Cui X., Xiao J., Zhan J., Meng T., Zhou W., Liu J., Xu H. Digestive system is a potential route of COVID-19: an analysis of single-cell co-expression pattern of key proteins in viral entry process. Gut, 2020, vol. 69, no. 6, pp. 1010–1018. doi: 10.1136/gutjnl-2020-320953
- Zhang W., Du R.H., Li B., Zheng X.S., Yang X.L., Hu B., Wang Y.Y., Xiao G.F., Yan B., Shi Z.L., Zhou P. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg. Microbes Infect., 2020, vol. 9, no. 1, pp. 386–389. doi: 10.1080/22221751.2020.1729071
- Zhou Y., Fu B., Zheng X., Wang D., Zhao C., Qi Y., Sun R., Tian Z., Xu X., Wei H. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Natl. Sci. Rev., 2020, vol. 7, no. 6, pp. 998–1002. doi: 10.1093/nsr/nwaa041
- Zuo T., Zhang F., Lui G.C.Y., Yeoh Y.K., Li A.Y.L., Zhan H., Wan Y., Chung A.C.K., Cheung C.P., Chen N., Lai C.K.C., Chen Z., Tso E.Y.K., Fung K.S.C., Chan V., Ling L., Joynt G., Hui D.S.C., Chan F.K.L., Chan P.K.S., Ng S.C. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology, 2020, vol. 159, no. 3, pp. 944–955.e8: doi: 10.1053/j.gastro.2020.05.048
Supplementary files

